elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Manufacturing and reinforcement technologies for the next generation aircraft rear-end

Haase, Thomas and Toso, Yves and Garbade, Marc and Adam, Till Julian and Kolbe, Andreas and Nguyen, Duy Chinh and Bäns, Constantin and Ortiz, Roland (2019) Manufacturing and reinforcement technologies for the next generation aircraft rear-end. Deutscher Luft- und Raumfahrt Kongress, 2019-09-30 - 2019-10-02, Darmstadt.

[img] PDF - Only accessible within DLR
2MB

Abstract

Caused by increasing mobility of more and more people, the demand for reducing CO2 emissions emitted by civil aviation increases constantly. Foreseeable CO2 restrictions for future aircraft require lightweight designs, new engine concepts and likely disruptive new aircraft configurations to prevent growing ecological footprints. Beside these ecologic requirements, the mobility increase dictates to develop technologies for low-cost, high rate production. Therefore, the Clean Sky 2 research program supports finding answers for these challenging, sometimes conflicting requirements. Different promising aircraft concepts (hybrid electric propulsion, forward swept wings or tails) require new designs of the a/c rear end. Design drivers are the auxiliary power unit (APU) and its arrangement as well as engine integration and tail surface arrangement. Additionally, low cost manufacturing technologies for lightweight materials will be addressed in order to increase the production rate and the fuel efficiency due to mass reduction. The German aerospace center (DLR) supports the investigations towards a future rear end with two research streams: 1.) Simulation tools for the design of lightweight and cost efficient reinforcements required at the aircraft rear end and 2.) Thermoplastic manufacturing technologies for complex and double curved rear end structures. Meanwhile, two large high velocity impact test campaigns were conducted on a range of different materials, including a reference material. One test campaign was conducted at DLR Stuttgart and the second test campaign took place at ONERA Lille (France). A further test campaign is foreseen this year. Besides the security relevant high velocity impact test, real-time damage assessment technologies are developed supporting the maintenance of aircraft and enables a flexible maintenance concept. The first development step towards high-rate thermoplastic fiber lay-up is the approach based on the use of a xenon heating lamp. Xenon heating requires hardly any security efforts and is therefore interesting for flexible low cost manufacturing. First manufacturing trials with this technology at DLR Stade reveal the control parameters necessary to adjust the nip point temperature. Furthermore, the test samples show a good consolidation in the microsection. The final paper will discuss the benefits and drawbacks of the investigated advanced impact materials and their effects on the initially mentioned environmental targets. Furthermore, the thermoplastic lay-up technology will be assessed with respect to the manufacturing targets of 100 a/c a month.

Item URL in elib:https://elib.dlr.de/134418/
Document Type:Conference or Workshop Item (Speech)
Title:Manufacturing and reinforcement technologies for the next generation aircraft rear-end
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Haase, ThomasUNSPECIFIEDhttps://orcid.org/0000-0002-9553-9628UNSPECIFIED
Toso, YvesUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Garbade, MarcUNSPECIFIEDhttps://orcid.org/0000-0002-3465-7700UNSPECIFIED
Adam, Till JulianUNSPECIFIEDhttps://orcid.org/0000-0003-2726-739XUNSPECIFIED
Kolbe, AndreasUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Nguyen, Duy ChinhUNSPECIFIEDhttps://orcid.org/0000-0002-5894-9986UNSPECIFIED
Bäns, ConstantinUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Ortiz, RolandUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Date:December 2019
Refereed publication:Yes
Open Access:No
Gold Open Access:No
In SCOPUS:No
In ISI Web of Science:No
Status:Published
Keywords:aircraft rear-end, impact, reinforcemnet, xenon heating, lightning strike protection
Event Title:Deutscher Luft- und Raumfahrt Kongress
Event Location:Darmstadt
Event Type:national Conference
Event Start Date:30 September 2019
Event End Date:2 October 2019
Organizer:Deutsche Gesellschaft für Luft- und Raumfahrt
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Aeronautics
HGF - Program Themes:fixed-wing aircraft
DLR - Research area:Aeronautics
DLR - Program:L AR - Aircraft Research
DLR - Research theme (Project):L - Structures and Materials (old)
Location: Braunschweig
Institutes and Institutions:Institute of Structures and Design > Structural Integrity
Institute of Composite Structures and Adaptive Systems > Structural Mechanics
Institute of Composite Structures and Adaptive Systems > Adaptronics
Institute of Composite Structures and Adaptive Systems > Composite Process Technology
Institute of Composite Structures and Adaptive Systems > Multifunctional Materials
Deposited By: Haase, Thomas
Deposited On:11 Mar 2020 14:45
Last Modified:24 Apr 2024 20:37

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.