Serafín García, Sergio Alejandro and Martin del Campo Becerra, Gustavo Daniel and Ortega Cisneros, Susana and Reigber, Andreas (2020) SURE-Based Regularization Parameter Selection for TomoSAR Imaging via Maximum-Likelihood. In: 21st International Radar Symposium, IRS 2021. International Radar Symposium (IRS), 2020-10-05 - 2020-10-07, Warsaw, Poland. doi: 10.23919/IRS48640.2020.9253844. ISBN 978-394497631-0. ISSN 2155-5753.
Full text not available from this repository.
Abstract
Regularized iterative reconstruction algorithms for Synthetic Aperture Radar (SAR) Tomography (TomoSAR), like the ones based on Maximum Likelihood (ML), offer an accurate estimate of the Power Spectrum Pattern (PSP) displaced along the Perpendicular to the Line-of-Sight (PLOS) direction. The recovered PSP is considered as ‘good-fitted’ or ‘appropriate-fitted’, since the reconstruction fits correctly enough with the position and density of the objectives in the field backscattered towards the sensor. However, the correct functioning of these regularization approaches is constrained to the proper selection of the regularization parameters. Therefore, for such a purpose, this paper suggests using a criterion based on the Stein’s Unbiased Risk Estimate (SURE) strategy. SURE approximates the Mean Square Error (MSE) between the estimated and actual PSP, purely from the measured (observed) data, without the need of any knowledge about the true PSP. Consequently, the proper selection of the regularization parameters corresponds to the minimum SURE value, which guarantees having a ‘good-fitted’ reconstruction. The experiments are performed in simulated data for different representative cases.
Item URL in elib: | https://elib.dlr.de/134328/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||
Title: | SURE-Based Regularization Parameter Selection for TomoSAR Imaging via Maximum-Likelihood | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 2020 | ||||||||||||||||||||
Journal or Publication Title: | 21st International Radar Symposium, IRS 2021 | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
DOI: | 10.23919/IRS48640.2020.9253844 | ||||||||||||||||||||
ISSN: | 2155-5753 | ||||||||||||||||||||
ISBN: | 978-394497631-0 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Maximum-Likelihood (ML), Stein’s Unbiased Risk Estimate (SURE), Synthetic Aperture Radar (SAR) Tomography (TomoSAR). | ||||||||||||||||||||
Event Title: | International Radar Symposium (IRS) | ||||||||||||||||||||
Event Location: | Warsaw, Poland | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Start Date: | 5 October 2020 | ||||||||||||||||||||
Event End Date: | 7 October 2020 | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Aircraft SAR | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Microwaves and Radar Institute | ||||||||||||||||||||
Deposited By: | Martin del Campo Becerra, Gustavo | ||||||||||||||||||||
Deposited On: | 04 Mar 2020 11:24 | ||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:37 |
Repository Staff Only: item control page