Li, Qingyu and Qiu, Chunping and Ma, Lei and Schmitt, Michael and Zhu, Xiao Xiang (2020) Mapping the Land Cover of Africa at 10 m Resolution from Multi-Source Remote Sensing Data with Google Earth Engine. Remote Sensing, 12 (4), pp. 1-22. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs12040602. ISSN 2072-4292.
PDF
- Published version
9MB |
Official URL: https://www.mdpi.com/2072-4292/12/4/602
Abstract
The remote sensing based mapping of land cover at extensive scales, e.g., of whole continents, is still a challenging task because of the need for sophisticated pipelines that combine every step from data acquisition to land cover classification. Utilizing the Google Earth Engine (GEE), which provides a catalog of multi-source data and a cloud-based environment, this research generates a land cover map of the whole African continent at 10 m resolution. This land cover map could provide a large-scale base layer for a more detailed local climate zone mapping of urban areas, which lie in the focus of interest of many studies. In this regard, we provide a free download link for our land cover maps of African cities at the end of this paper. It is shown that our product has achieved an overall accuracy of 81% for five classes, which is superior to the existing 10 m land cover product FROM-GLC10 in detecting urban class in city areas and identifying the boundaries between trees and low plants in rural areas. The best data input configurations are carefully selected based on a comparison of results from different input sources, which include Sentinel-2, Landsat-8, Global Human Settlement Layer (GHSL), Night Time Light (NTL) Data, Shuttle Radar Topography Mission (SRTM), and MODIS Land Surface Temperature (LST). We provide a further investigation of the importance of individual features derived from a Random Forest (RF) classifier. In order to study the influence of sampling strategies on the land cover mapping performance, we have designed a transferability analysis experiment, which has not been adequately addressed in the current literature. In this experiment, we test whether trained models from several cities contain valuable information to classify a different city. It was found that samples of the urban class have better reusability than those of other natural land cover classes, i.e., trees, low plants, bare soil or sand, and water. After experimental evaluation of different land cover classes across different cities, we conclude that continental land cover mapping results can be considerably improved when training samples of natural land cover classes are collected and combined from areas covering each Köppen climate zone.
Item URL in elib: | https://elib.dlr.de/134325/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||
Title: | Mapping the Land Cover of Africa at 10 m Resolution from Multi-Source Remote Sensing Data with Google Earth Engine | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 11 February 2020 | ||||||||||||||||||||||||
Journal or Publication Title: | Remote Sensing | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
Volume: | 12 | ||||||||||||||||||||||||
DOI: | 10.3390/rs12040602 | ||||||||||||||||||||||||
Page Range: | pp. 1-22 | ||||||||||||||||||||||||
Publisher: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||||||||||
ISSN: | 2072-4292 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | land cover mapping; multi-source data; Sentinel-2; transferability | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Vorhaben hochauflösende Fernerkundungsverfahren (old) | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||
Deposited By: | Liu, Rong | ||||||||||||||||||||||||
Deposited On: | 05 Mar 2020 14:07 | ||||||||||||||||||||||||
Last Modified: | 25 Oct 2023 08:28 |
Repository Staff Only: item control page