Xia, Gui-Song and Huang, Jin and Xue, Nan and Lu, Qikai and Zhu, Xiao Xiang (2019) GeoSay: A geometric saliency for extracting buildings in remote sensing images. Computer Vision and Image Understanding, 186, pp. 37-47. Elsevier. doi: 10.1016/j.cviu.2019.06.001. ISSN 1077-3142.
Full text not available from this repository.
Official URL: https://www.sciencedirect.com/science/article/pii/S1077314219300918#!
Abstract
Automatic extraction of buildings in remote sensing images is an important but challenging task and finds many applications in different fields such as urban planning, navigation and so on. This paper addresses the problem of buildings extraction in very high-spatial-resolution (VHSR) remote sensing (RS) images, whose spatial resolution is often up to half meters and provides rich information about buildings. Based on the observation that buildings in VHSR-RS images are always more distinguishable in geometry than in texture or spectral domain, this paper proposes a geometric building index (GBI) for accurate building extraction, by computing the geometric saliency from VHSR-RS images. More precisely, given an image, the geometric saliency is derived from a mid-level geometric representations based on meaningful junctions that can locally describe geometrical structures of images. The resulting GBI is finally measured by integrating the derived geometric saliency of buildings. Experiments on three public and commonly used datasets demonstrate that the proposed GBI achieves the state-of-the-art performance and shows impressive generalization capability. Additionally, GBI preserves both the exact position and accurate shape of single buildings compared to existing methods.
Item URL in elib: | https://elib.dlr.de/134085/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||
Title: | GeoSay: A geometric saliency for extracting buildings in remote sensing images | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | September 2019 | ||||||||||||||||||||||||
Journal or Publication Title: | Computer Vision and Image Understanding | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
Volume: | 186 | ||||||||||||||||||||||||
DOI: | 10.1016/j.cviu.2019.06.001 | ||||||||||||||||||||||||
Page Range: | pp. 37-47 | ||||||||||||||||||||||||
Publisher: | Elsevier | ||||||||||||||||||||||||
ISSN: | 1077-3142 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Building detection, Geometric saliency, Junction, Remote sensing image | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Geoscientific remote sensing and GIS methods, R - Optical remote sensing | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||
Deposited By: | Rösel, Dr. Anja | ||||||||||||||||||||||||
Deposited On: | 13 Feb 2020 10:05 | ||||||||||||||||||||||||
Last Modified: | 17 Dec 2020 18:48 |
Repository Staff Only: item control page