Hua, Yuansheng and Mou, LiChao and Zhu, Xiao Xiang (2019) Multi-label Aerial Image Classification using A Bidirectional Class-wise Attention Network. In: 2019 Joint Urban Remote Sensing Event, JURSE 2019, pp. 1-4. JURSE 2019, 2019-05-22 - 2019-05-24, Vannes, France. doi: 10.1109/JURSE.2019.8808940. ISBN 978-172810009-8.
PDF
2MB |
Official URL: https://ieeexplore.ieee.org/document/8808940
Abstract
Multi-label aerial image classification is of great significance in remote sensing community, and many researches have been conducted over the past few years. However, one common limitation shared by existing methods is that the co-occurrence relationship of various classes, so called class dependency, is underexplored and leads to an inconsiderate decision. In this paper, we propose a novel end-to-end network, namely class-wise attention-based convolutional and bidirectional LSTM network (CA-Conv-BiLSTM), for this task. The proposed network consists of three indispensable components: 1) a feature extraction module, 2) a class attention learning layer, and 3) a bidirectional LSTM-based sub-network. Experimental results on UCM multi-label dataset and DFC15 multi-label dataset validate the effectiveness of our model quantitatively and qualitatively.
Item URL in elib: | https://elib.dlr.de/134068/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||
Title: | Multi-label Aerial Image Classification using A Bidirectional Class-wise Attention Network | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | May 2019 | ||||||||||||||||
Journal or Publication Title: | 2019 Joint Urban Remote Sensing Event, JURSE 2019 | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
DOI: | 10.1109/JURSE.2019.8808940 | ||||||||||||||||
Page Range: | pp. 1-4 | ||||||||||||||||
Editors: |
| ||||||||||||||||
ISBN: | 978-172810009-8 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | multi-label classification, high resolution aerial image, Convolutional Neural Network (CNN), class attention learning, Bidirectional Long Short-Term Memory (BiLSTM), class dependency | ||||||||||||||||
Event Title: | JURSE 2019 | ||||||||||||||||
Event Location: | Vannes, France | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 22 May 2019 | ||||||||||||||||
Event End Date: | 24 May 2019 | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Vorhaben hochauflösende Fernerkundungsverfahren (old) | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||
Deposited By: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||
Deposited On: | 11 Feb 2020 09:45 | ||||||||||||||||
Last Modified: | 24 Apr 2024 20:37 |
Repository Staff Only: item control page