Mazza, Antonio and Sica, Francescopaolo and Rizzoli, Paola and Scarpa, Giuseppe (2019) TanDEM-X Forest Mapping using Convolutional Neural Networks. Remote Sensing, 11 (2980). Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs11242980. ISSN 2072-4292.
PDF
- Published version
10MB |
Official URL: https://www.mdpi.com/2072-4292/11/24/2980
Abstract
In this work we face the problem of forest mapping from TanDEM-X data by means of Convolutional Neural Networks (CNNs). Our study aims to highlight the relevance of domain-related features for the extraction of the information of interest, thanks to their joint nonlinear processing through CNN. In particular, we focus on the main InSAR features as the backscatter, coherence, and volume decorrelation, as well as the acquisition geometry through the local incidence angle. By using different state-of-the-art CNN architectures, our experiments consistently demonstrate the great potential of deep learning in data fusion for information extraction in the context of synthetic aperture radar signal processing, and specifically for the task of forest mapping from TanDEM-X images. We compare three state-of-the-art CNN architectures, such as ResNet, DenseNet, and U-Net, obtaining a large performance gain over the baseline approach for all of them, with the U-Net solution being the most effective one.
Item URL in elib: | https://elib.dlr.de/132719/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||
Title: | TanDEM-X Forest Mapping using Convolutional Neural Networks | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 12 December 2019 | ||||||||||||||||||||
Journal or Publication Title: | Remote Sensing | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
Volume: | 11 | ||||||||||||||||||||
DOI: | 10.3390/rs11242980 | ||||||||||||||||||||
Publisher: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||||||
ISSN: | 2072-4292 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Synthetic aperture radar, digital elevation model, image segmentation, forest classification, target detection, Convolutional Neural Network, data fusion | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Projekt TanDEM-X (old) | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Microwaves and Radar Institute | ||||||||||||||||||||
Deposited By: | Sica, Dr. Francescopaolo | ||||||||||||||||||||
Deposited On: | 12 Dec 2019 16:57 | ||||||||||||||||||||
Last Modified: | 14 Dec 2019 04:27 |
Repository Staff Only: item control page