Mazza, Antonio und Sica, Francescopaolo und Rizzoli, Paola und Scarpa, Giuseppe (2019) TanDEM-X Forest Mapping using Convolutional Neural Networks. Remote Sensing, 11 (2980). Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs11242980. ISSN 2072-4292.
PDF
- Verlagsversion (veröffentlichte Fassung)
10MB |
Offizielle URL: https://www.mdpi.com/2072-4292/11/24/2980
Kurzfassung
In this work we face the problem of forest mapping from TanDEM-X data by means of Convolutional Neural Networks (CNNs). Our study aims to highlight the relevance of domain-related features for the extraction of the information of interest, thanks to their joint nonlinear processing through CNN. In particular, we focus on the main InSAR features as the backscatter, coherence, and volume decorrelation, as well as the acquisition geometry through the local incidence angle. By using different state-of-the-art CNN architectures, our experiments consistently demonstrate the great potential of deep learning in data fusion for information extraction in the context of synthetic aperture radar signal processing, and specifically for the task of forest mapping from TanDEM-X images. We compare three state-of-the-art CNN architectures, such as ResNet, DenseNet, and U-Net, obtaining a large performance gain over the baseline approach for all of them, with the U-Net solution being the most effective one.
elib-URL des Eintrags: | https://elib.dlr.de/132719/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | TanDEM-X Forest Mapping using Convolutional Neural Networks | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 12 Dezember 2019 | ||||||||||||||||||||
Erschienen in: | Remote Sensing | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 11 | ||||||||||||||||||||
DOI: | 10.3390/rs11242980 | ||||||||||||||||||||
Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||||||
ISSN: | 2072-4292 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Synthetic aperture radar, digital elevation model, image segmentation, forest classification, target detection, Convolutional Neural Network, data fusion | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Projekt TanDEM-X (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Hochfrequenztechnik und Radarsysteme | ||||||||||||||||||||
Hinterlegt von: | Sica, Dr. Francescopaolo | ||||||||||||||||||||
Hinterlegt am: | 12 Dez 2019 16:57 | ||||||||||||||||||||
Letzte Änderung: | 14 Dez 2019 04:27 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags