elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Forced response sensitivity analysis using an adjoint harmonic balance solver

Engels-Putzka, Anna und Backhaus, Jan und Frey, Christian (2019) Forced response sensitivity analysis using an adjoint harmonic balance solver. Journal of Turbomachinery, 141 (3), 031014. American Society of Mechanical Engineers (ASME). doi: 10.1115/1.4041700. ISSN 0889-504X.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://asmedigitalcollection.asme.org/turbomachinery/article/doi/10.1115/1.4041700/475746/Forced-Response-Sensitivity-Analysis-Using-an

Kurzfassung

This paper describes the development and initial application of an adjoint harmonic balance (HB) solver. The HB method is a numerical method formulated in the frequency domain which is particularly suitable for the simulation of periodic unsteady flow phenomena in turbomachinery. Successful applications of this method include unsteady aerodynamics as well as aeroacoustics and aeroelasticity. Here, we focus on forced response due to the interaction of neighboring blade rows. In the simulation-based design and optimization of turbomachinery components, it is often helpful to be able to compute not only the objective values-e.g., performance data of a component-themselves but also their sensitivities with respect to variations of the geometry. An efficient way to compute such sensitivities for a large number of geometric changes is the application of the adjoint method. While this is frequently used in the context of steady computational fluid dynamics (CFD), it becomes prohibitively expensive for unsteady simulations in the time domain. For unsteady methods in the frequency domain, the use of adjoint solvers is feasible but still challenging. The present approach employs the reverse mode of algorithmic differentiation (AD) to construct a discrete adjoint of an existing HB solver in the framework of an industrially applied CFD code. The paper discusses implementational issues as well as the performance of the adjoint solver, in particular regarding memory requirements. The presented method is applied to compute the sensitivities of aeroelastic objectives with respect to geometric changes in a turbine stage.

elib-URL des Eintrags:https://elib.dlr.de/132487/
Dokumentart:Zeitschriftenbeitrag
Titel:Forced response sensitivity analysis using an adjoint harmonic balance solver
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Engels-Putzka, AnnaAnna.Engels-Putzka (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Backhaus, Janjan.backhaus (at) dlr.dehttps://orcid.org/0000-0003-1951-3829NICHT SPEZIFIZIERT
Frey, ChristianChristian.Frey (at) dlr.dehttps://orcid.org/0000-0003-0496-9225NICHT SPEZIFIZIERT
Datum:1 März 2019
Erschienen in:Journal of Turbomachinery
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:141
DOI:10.1115/1.4041700
Seitenbereich:031014
Verlag:American Society of Mechanical Engineers (ASME)
ISSN:0889-504X
Status:veröffentlicht
Stichwörter:Adjoint Method, Aerodynamics, Aeroelasticity, Algorithmic differentiation, Computational fluid dynamics, Forced response, Frequency domain methods, Harmonic Balance, Optimization, Sensitivity analysis, Turbines, Turbomachinery, Unsteady flow
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Antriebssysteme
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L ER - Engine Research
DLR - Teilgebiet (Projekt, Vorhaben):L - Virtuelles Triebwerk und Validierungsmethoden (alt)
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Antriebstechnik > Numerische Methoden
Hinterlegt von: Engels-Putzka, Anna
Hinterlegt am:10 Dez 2019 13:55
Letzte Änderung:31 Okt 2023 15:02

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.