Qiu, Chunping and Schmitt, Michael and Zhu, Xiao Xiang (2019) Fusing Multi-Seasonal Sentinel-2 Images with Residual Convolutional Neural Networks for Local Climate Zone-Derived Urban Land Cover Classification. IGARSS 2019, 2019-07-28 - 2019-08-02, Yokohama/Japan. doi: 10.1109/IGARSS.2019.8898223.
PDF
2MB |
Official URL: https://ieeexplore.ieee.org/document/8898223
Abstract
This paper proposes a framework to fuse multi-seasonal Sentinel-2 images, with application on LCZ-derived urban land cover classification. Cross-validation over a seven-city study area in central Europe demonstrates its consistently better performance over several previous approaches, with the same experimental setup. Based on our previous work, we can conclude that decision-level fusion is better than feature-level fusion for similar tasks at similar scale with multi-seasonal Sentinel-2 images. With the framework, urban land cover maps of several cities are produced. The visualization of two exemplary areas shows urban structures that are consistent with existing datasets. This framework can be also generally beneficial for other types of urban mapping.
Item URL in elib: | https://elib.dlr.de/132447/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||
Title: | Fusing Multi-Seasonal Sentinel-2 Images with Residual Convolutional Neural Networks for Local Climate Zone-Derived Urban Land Cover Classification | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 2019 | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | No | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
DOI: | 10.1109/IGARSS.2019.8898223 | ||||||||||||||||
Page Range: | pp. 5037-5040 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | Sentinel-2, Classification, residual convolutional neural network (ResNet), urban land cover, long short-term memory (LSTM) | ||||||||||||||||
Event Title: | IGARSS 2019 | ||||||||||||||||
Event Location: | Yokohama/Japan | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 28 July 2019 | ||||||||||||||||
Event End Date: | 2 August 2019 | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Vorhaben hochauflösende Fernerkundungsverfahren (old) | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||
Deposited By: | Hong, Danfeng | ||||||||||||||||
Deposited On: | 06 Dec 2019 16:40 | ||||||||||||||||
Last Modified: | 24 Apr 2024 20:35 |
Repository Staff Only: item control page