Chaudhuri, Ushashi and Banerjee, Biplab and Bhattacharya, Avik and Datcu, Mihai (2020) CMIR-NET : A deep learning based model for cross-modal retrieval in remote sensing. Pattern Recognition Letters, 131, pp. 456-462. Elsevier. doi: 10.1016/j.patrec.2020.02.006. ISSN 0167-8655.
Full text not available from this repository.
Official URL: https://www.sciencedirect.com/science/article/abs/pii/S0167865520300453
Abstract
We address the problem of cross-modal information retrieval in the domain of remote sensing. In particular, we are interested in two application scenarios: i) cross– modal retrieval between panchromatic (PAN) and multi-spectral imagery, and ii) multi-label image retrieval between very high resolution (VHR) images and speech based label annotations. These multi-modal retrieval scenarios are more challenging than the traditional uni-modal retrieval approaches given the inherent differences in distributions between the modalities. However, with the increasing availability of multi-source remote sensing data and the scarcity of enough semantic annotations, the task of multi-modal retrieval has recently become extremely important. In this regard, we propose a novel deep neural network based architecture which is considered to learn a discriminative shared feature space for all the input modalities, suitable for semantically coherent information retrieval. Extensive experiments are carried out on the benchmark large-scale PAN - multi-spectral DSRSID dataset and the multi-label UC-Merced dataset. Together with the Merced dataset, we generate a corpus of speech signals corresponding to the labels. Superior performance with respect to the current state-of-the-art is observed in all the cases.
Item URL in elib: | https://elib.dlr.de/130883/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||
Title: | CMIR-NET : A deep learning based model for cross-modal retrieval in remote sensing | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | March 2020 | ||||||||||||||||||||
Journal or Publication Title: | Pattern Recognition Letters | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
Volume: | 131 | ||||||||||||||||||||
DOI: | 10.1016/j.patrec.2020.02.006 | ||||||||||||||||||||
Page Range: | pp. 456-462 | ||||||||||||||||||||
Publisher: | Elsevier | ||||||||||||||||||||
ISSN: | 0167-8655 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | cross-modal information retrieval, panchromaticimagery, multii-spectral imagery | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Vorhaben hochauflösende Fernerkundungsverfahren (old) | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||
Deposited By: | Karmakar, Chandrabali | ||||||||||||||||||||
Deposited On: | 09 Mar 2020 13:12 | ||||||||||||||||||||
Last Modified: | 16 Jun 2023 10:18 |
Repository Staff Only: item control page