Zhao, Juanping and Datcu, Mihai and Zhang, Zenghui and Xiong, Huilin and Yu, Wenxian (2019) Learning Physical Scattering Patterns from POLSAR Images By Using Complex-Valued CNN. IGARSS 2019, 2019-07-28 - 2019-08-02, Yokohama, Japan. doi: 10.1109/igarss.2019.8900150.
PDF
971kB |
Official URL: https://igarss2019.org/Papers/ViewPapers_MS.asp?PaperNum=3824
Abstract
Full-polarimetric synthetic aperture radar (SAR) images have the ability to provide physical patterns of the earth observation, no more than geometric information. In order to learn physical patterns from non-full-polarimetric SAR images, a complex-valued CNN is leveraged to learn a model containing physical parameters. The parameters are learned from the original complex scattering matrix of full-polarimetric SAR images and they can be adopted to extract physical patterns from non-full-polarimetric SAR images. Cloude and Pottier’s H-α division, as the annotation principle, is computed by way of coherence matrix. We perform experiments on (German Aerospace Center) DLR’s full-polarimetric, airborne F-SAR data, demonstrating that extracting physical patterns from non-full-polarimetric images is feasible. The comparative results illustrate that: 1) The best physical categoric patterns can be extracted from HV and VH polarimetric images in general, while performance from HH and VV polarimetric images are limited; 2) Cross-polarimetric SAR images have greater ability for surface and volume scattering, while co-polarimetric ones are better for multiple scattering extraction.
Item URL in elib: | https://elib.dlr.de/130535/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Poster) | ||||||||||||||||||||||||
Title: | Learning Physical Scattering Patterns from POLSAR Images By Using Complex-Valued CNN | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 31 January 2019 | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||
DOI: | 10.1109/igarss.2019.8900150 | ||||||||||||||||||||||||
Page Range: | pp. 1-4 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Polarimetric synthetic aperture radar (PolSAR) images, physical scattering pattern, complex-valued convolutional neural network (CNN), H-A-α target decomposition, F-SAR | ||||||||||||||||||||||||
Event Title: | IGARSS 2019 | ||||||||||||||||||||||||
Event Location: | Yokohama, Japan | ||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||
Event Start Date: | 28 July 2019 | ||||||||||||||||||||||||
Event End Date: | 2 August 2019 | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Vorhaben hochauflösende Fernerkundungsverfahren (old) | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||
Deposited By: | Karmakar, Chandrabali | ||||||||||||||||||||||||
Deposited On: | 04 Dec 2019 14:16 | ||||||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:34 |
Repository Staff Only: item control page