Zhao, Juanping und Datcu, Mihai und Zhang, Zenghui und Xiong, Huilin und Yu, Wenxian (2019) Learning Physical Scattering Patterns from POLSAR Images By Using Complex-Valued CNN. IGARSS 2019, 2019-07-28 - 2019-08-02, Yokohama, Japan. doi: 10.1109/igarss.2019.8900150.
PDF
971kB |
Offizielle URL: https://igarss2019.org/Papers/ViewPapers_MS.asp?PaperNum=3824
Kurzfassung
Full-polarimetric synthetic aperture radar (SAR) images have the ability to provide physical patterns of the earth observation, no more than geometric information. In order to learn physical patterns from non-full-polarimetric SAR images, a complex-valued CNN is leveraged to learn a model containing physical parameters. The parameters are learned from the original complex scattering matrix of full-polarimetric SAR images and they can be adopted to extract physical patterns from non-full-polarimetric SAR images. Cloude and Pottier’s H-α division, as the annotation principle, is computed by way of coherence matrix. We perform experiments on (German Aerospace Center) DLR’s full-polarimetric, airborne F-SAR data, demonstrating that extracting physical patterns from non-full-polarimetric images is feasible. The comparative results illustrate that: 1) The best physical categoric patterns can be extracted from HV and VH polarimetric images in general, while performance from HH and VV polarimetric images are limited; 2) Cross-polarimetric SAR images have greater ability for surface and volume scattering, while co-polarimetric ones are better for multiple scattering extraction.
elib-URL des Eintrags: | https://elib.dlr.de/130535/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||||||
Titel: | Learning Physical Scattering Patterns from POLSAR Images By Using Complex-Valued CNN | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 31 Januar 2019 | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
DOI: | 10.1109/igarss.2019.8900150 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 1-4 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Polarimetric synthetic aperture radar (PolSAR) images, physical scattering pattern, complex-valued convolutional neural network (CNN), H-A-α target decomposition, F-SAR | ||||||||||||||||||||||||
Veranstaltungstitel: | IGARSS 2019 | ||||||||||||||||||||||||
Veranstaltungsort: | Yokohama, Japan | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 28 Juli 2019 | ||||||||||||||||||||||||
Veranstaltungsende: | 2 August 2019 | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||
Hinterlegt von: | Karmakar, Chandrabali | ||||||||||||||||||||||||
Hinterlegt am: | 04 Dez 2019 14:16 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:34 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags