Tong, Xin-Yi and Xia, Gui-Song and Hu, Fan and Zhong, Yanfei and Datcu, Mihai and Zhang, Liangpei (2019) Exploiting Deep Features for Remote Sensing Image Retrieval: A Systematic Investigation. IEEE Transactions on Big Data, 6 (3), pp. 507-521. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TBDATA.2019.2948924. ISSN 2332-7790.
Full text not available from this repository.
Official URL: https://ieeexplore.ieee.org/document/8880494
Abstract
Remote sensing (RS) image retrieval is of great significant for geological information mining. Over the past two decades, a large amount of research on this task has been carried out, which mainly focuses on the following three core issues: feature extraction, similarity metric and relevance feedback. Due to the complexity and multiformity of ground objects in high-resolution remote sensing (HRRS) images, there is still room for improvement in the current retrieval approaches. In this paper, we analyze the three core issues of RS image retrieval and provide a comprehensive review on existing methods. Furthermore, for the goal to advance the state-of-the-art in HRRS image retrieval, we focus on the feature extraction issue and delve how to use powerful deep representations to address this task. We conduct systematic investigation on evaluating correlative factors that may affect the performance of deep features. By optimizing each factor, we acquire remarkable retrieval results on publicly available HRRS datasets. Finally, we explain the experimental phenomenon in detail and draw conclusions according to our analysis. Our work can serve as a guiding role for the research of content-based RS image retrieval.
Item URL in elib: | https://elib.dlr.de/130514/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||||||
Title: | Exploiting Deep Features for Remote Sensing Image Retrieval: A Systematic Investigation | ||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||
Date: | 23 October 2019 | ||||||||||||||||||||||||||||
Journal or Publication Title: | IEEE Transactions on Big Data | ||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||||||
Volume: | 6 | ||||||||||||||||||||||||||||
DOI: | 10.1109/TBDATA.2019.2948924 | ||||||||||||||||||||||||||||
Page Range: | pp. 507-521 | ||||||||||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||||||
ISSN: | 2332-7790 | ||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||
Keywords: | Remote Sensing, Image Retrieval, Deep Features | ||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Vorhaben hochauflösende Fernerkundungsverfahren (old) | ||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||||||
Deposited By: | Karmakar, Chandrabali | ||||||||||||||||||||||||||||
Deposited On: | 03 Dec 2019 12:16 | ||||||||||||||||||||||||||||
Last Modified: | 20 Oct 2023 08:59 |
Repository Staff Only: item control page