elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Representation Learning for SAR Observations: A generative Model Approach

Andrei, Vlad and Dumitru, Corneliu Octavian and Datcu, Mihai (2019) Representation Learning for SAR Observations: A generative Model Approach. TerraSAR-X Science Team Meeting 2019, 2019-10-21 - 2019-10-24, Oberpfaffenhofen, Germany.

Full text not available from this repository.

Official URL: https://tandemx-science.dlr.de/cgi-bin/wcm.pl?page=Tdm-Science-Team-Meeting


Item URL in elib:https://elib.dlr.de/130184/
Document Type:Conference or Workshop Item (Poster)
Title:Representation Learning for SAR Observations: A generative Model Approach
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Andrei, VladTUMUNSPECIFIEDUNSPECIFIED
Dumitru, Corneliu OctavianUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Datcu, MihaiUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Date:23 October 2019
Refereed publication:No
Open Access:No
Gold Open Access:No
In SCOPUS:No
In ISI Web of Science:No
Status:Published
Keywords:SAR, autoencoders
Event Title:TerraSAR-X Science Team Meeting 2019
Event Location:Oberpfaffenhofen, Germany
Event Type:Workshop
Event Start Date:21 October 2019
Event End Date:24 October 2019
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Earth Observation
DLR - Research area:Raumfahrt
DLR - Program:R EO - Earth Observation
DLR - Research theme (Project):R - Vorhaben hochauflösende Fernerkundungsverfahren (old)
Location: Oberpfaffenhofen
Institutes and Institutions:Remote Sensing Technology Institute > EO Data Science
Deposited By: Karmakar, Chandrabali
Deposited On:14 Nov 2019 10:21
Last Modified:24 Apr 2024 20:33

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.