Hong, Danfeng and Yokoya, Naoto and Chanussot, Jocelyn and Xu, Jian and Zhu, Xiao Xiang (2019) Learning to Propagate Labels on Graphs: An Iterative Multitask Regression Framework for Semi-supervised Hyperspectral Dimensionality Reduction. ISPRS Journal of Photogrammetry and Remote Sensing, 158, pp. 35-49. Elsevier. doi: 10.1016/j.isprsjprs.2019.09.008. ISSN 0924-2716.
PDF
- Postprint version (accepted manuscript)
4MB |
Official URL: https://www.sciencedirect.com/science/article/pii/S0924271619302199?via%3Dihub
Abstract
Hyperspectral dimensionality reduction (HDR), an important preprocessing step prior to high-level data analysis, has been garnering growing attention in the remote sensing community. Although a variety of methods, both unsupervised and supervised models, have been proposed for this task, yet the discriminative ability in feature representation still remains limited due to the lack of a powerful tool that effectively exploits the labeled and unlabeled data in the HDR process. A semi-supervised HDR approach, called iterative multitask regression (IMR), is proposed in this paper to address this need. IMR aims at learning a low-dimensional subspace by jointly considering the labeled and unlabeled data, and also bridging the learned subspace with two regression tasks: labels and pseudo-labels initialized by a given classifier. More significantly, IMR dynamically propagates the labels on a learnable graph and progressively refines pseudo-labels, yielding a well-conditioned feedback system. Experiments conducted on three widely-used hyperspectral image datasets demonstrate that the dimension-reduced features learned by the proposed IMR framework with respect to classification or recognition accuracy are superior to those of related state-of-the-art HDR approaches.
Item URL in elib: | https://elib.dlr.de/129267/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||
Title: | Learning to Propagate Labels on Graphs: An Iterative Multitask Regression Framework for Semi-supervised Hyperspectral Dimensionality Reduction | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | December 2019 | ||||||||||||||||||||||||
Journal or Publication Title: | ISPRS Journal of Photogrammetry and Remote Sensing | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
Volume: | 158 | ||||||||||||||||||||||||
DOI: | 10.1016/j.isprsjprs.2019.09.008 | ||||||||||||||||||||||||
Page Range: | pp. 35-49 | ||||||||||||||||||||||||
Publisher: | Elsevier | ||||||||||||||||||||||||
ISSN: | 0924-2716 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Dimensionality reduction, graph learning, hyperspectral image, iterative, label propagation, multitask regression, remote sensing, semi-supervised. | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Vorhaben hochauflösende Fernerkundungsverfahren (old) | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science Remote Sensing Technology Institute > Atmospheric Processors | ||||||||||||||||||||||||
Deposited By: | Hong, Danfeng | ||||||||||||||||||||||||
Deposited On: | 27 Sep 2019 11:34 | ||||||||||||||||||||||||
Last Modified: | 31 Oct 2023 13:29 |
Repository Staff Only: item control page