Stark, Thomas and Wurm, Michael and Taubenböck, Hannes and Zhu, Xiao Xiang (2019) Slum Mapping in Imbalanced Remote Sensing Datasets Using Transfer Learned Deep Features. In: 2019 Joint Urban Remote Sensing Event, JURSE 2019, pp. 1-4. IEEE. JURSE 2019, 2019-05-22 - 2019-05-24, Vannes, Frankreich. doi: 10.1109/jurse.2019.8808965. ISBN 978-172810009-8.
Full text not available from this repository.
Official URL: https://ieeexplore.ieee.org/document/8808965
Abstract
Unprecedented urbanization, particularly in countries of the Global South, results in the formation of slums. Here, remote sensing has proven to be an extremely valuable and effective tool for mapping slums. Recent advances in transferring deep features learned in fully convolutional networks (FCN) allow the specific structural types and alignments of buildings in slums to be mapped. The class imbalance of slums is especially challenging in the context of intra-urban variability of slums themselves, and their possible similarity to other urban built-up structures. Thus, in our study we aim to analyze the transfer learning capabilities of FCNs for slum mapping with respect to training on imbalanced datasets and the quantity of available training images. When the slum sample proportion is increased an improvement of the Intersection over Union (IU) of 10% to 30% can be observed. Increasing the total number of images improves the IU up to 20% to 50%. Transfer learning proves extremely valuable in retrieving information on complex and heterogeneous urban structures such as slum patches.
Item URL in elib: | https://elib.dlr.de/128983/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech, Poster) | ||||||||||||||||||||
Title: | Slum Mapping in Imbalanced Remote Sensing Datasets Using Transfer Learned Deep Features | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | May 2019 | ||||||||||||||||||||
Journal or Publication Title: | 2019 Joint Urban Remote Sensing Event, JURSE 2019 | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
DOI: | 10.1109/jurse.2019.8808965 | ||||||||||||||||||||
Page Range: | pp. 1-4 | ||||||||||||||||||||
Publisher: | IEEE | ||||||||||||||||||||
ISBN: | 978-172810009-8 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | remote sensing, urban poverty, slums, transfer learning, fully convolutional network, deep learning | ||||||||||||||||||||
Event Title: | JURSE 2019 | ||||||||||||||||||||
Event Location: | Vannes, Frankreich | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Start Date: | 22 May 2019 | ||||||||||||||||||||
Event End Date: | 24 May 2019 | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Remote Sensing and Geo Research | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science German Remote Sensing Data Center > Geo Risks and Civil Security | ||||||||||||||||||||
Deposited By: | Stark, Thomas | ||||||||||||||||||||
Deposited On: | 19 Sep 2019 12:16 | ||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:32 |
Repository Staff Only: item control page