Stark, Thomas und Wurm, Michael und Taubenböck, Hannes und Zhu, Xiao Xiang (2019) Slum Mapping in Imbalanced Remote Sensing Datasets Using Transfer Learned Deep Features. In: 2019 Joint Urban Remote Sensing Event, JURSE 2019, Seiten 1-4. IEEE. JURSE 2019, 2019-05-22 - 2019-05-24, Vannes, Frankreich. doi: 10.1109/jurse.2019.8808965. ISBN 978-172810009-8.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://ieeexplore.ieee.org/document/8808965
Kurzfassung
Unprecedented urbanization, particularly in countries of the Global South, results in the formation of slums. Here, remote sensing has proven to be an extremely valuable and effective tool for mapping slums. Recent advances in transferring deep features learned in fully convolutional networks (FCN) allow the specific structural types and alignments of buildings in slums to be mapped. The class imbalance of slums is especially challenging in the context of intra-urban variability of slums themselves, and their possible similarity to other urban built-up structures. Thus, in our study we aim to analyze the transfer learning capabilities of FCNs for slum mapping with respect to training on imbalanced datasets and the quantity of available training images. When the slum sample proportion is increased an improvement of the Intersection over Union (IU) of 10% to 30% can be observed. Increasing the total number of images improves the IU up to 20% to 50%. Transfer learning proves extremely valuable in retrieving information on complex and heterogeneous urban structures such as slum patches.
elib-URL des Eintrags: | https://elib.dlr.de/128983/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag, Poster) | ||||||||||||||||||||
Titel: | Slum Mapping in Imbalanced Remote Sensing Datasets Using Transfer Learned Deep Features | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | Mai 2019 | ||||||||||||||||||||
Erschienen in: | 2019 Joint Urban Remote Sensing Event, JURSE 2019 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.1109/jurse.2019.8808965 | ||||||||||||||||||||
Seitenbereich: | Seiten 1-4 | ||||||||||||||||||||
Verlag: | IEEE | ||||||||||||||||||||
ISBN: | 978-172810009-8 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | remote sensing, urban poverty, slums, transfer learning, fully convolutional network, deep learning | ||||||||||||||||||||
Veranstaltungstitel: | JURSE 2019 | ||||||||||||||||||||
Veranstaltungsort: | Vannes, Frankreich | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 22 Mai 2019 | ||||||||||||||||||||
Veranstaltungsende: | 24 Mai 2019 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit | ||||||||||||||||||||
Hinterlegt von: | Stark, Thomas | ||||||||||||||||||||
Hinterlegt am: | 19 Sep 2019 12:16 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:32 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags