Hong, Danfeng and Chanussot, Jocelyn and Yokoya, Naoto and Heiden, Uta and Heldens, Wieke and Zhu, Xiao Xiang (2019) WU-Net: A Weakly-supervised Unmixing Network for Remotely Sensed Hyperspectral Imagery. In: 2019 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 1-4. IGARSS 2019, 2019-07-28 - 2019-08-02, Yokohama, Japan. doi: 10.1109/igarss.2019.8899865.
This is the latest version of this item.
PDF
613kB |
Abstract
Recently, enormous efforts have been made to improve the performance of the linear or nonlinear mixing model for hyperspectral unmixing, yet their ability to handle spectral variability and extract physically meaningful endmembers remains limited. Based on the powerful learning ability of deep learning, we propose a weakly-supervised unmixing network, called WU-Net, to break the bottleneck. Beyond the autoencoder-like architecture, WU-Net learns an additional network from the pure or nearly-pure endmembers to correct the weights of another unmixing network towards a more accurate and interpretable unmixing solution, thus yielding a two-stream deep network. Experimental results conducted on two different datasets, one fully artificial simulation dataset and one simulated EnMap dataset generated from a real HyMap dataset, demonstrate the effectiveness and superiority of WU-Net over several state-of-the-art algorithms
Item URL in elib: | https://elib.dlr.de/128489/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||||||||||
Title: | WU-Net: A Weakly-supervised Unmixing Network for Remotely Sensed Hyperspectral Imagery | ||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||
Date: | 2019 | ||||||||||||||||||||||||||||
Journal or Publication Title: | 2019 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||||||
DOI: | 10.1109/igarss.2019.8899865 | ||||||||||||||||||||||||||||
Page Range: | pp. 1-4 | ||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||
Keywords: | Deep learning, hyperspectral imagery,remote sensing, spectral unmixing, two-stream network,weakly-supervised, HyMap, EnMAP | ||||||||||||||||||||||||||||
Event Title: | IGARSS 2019 | ||||||||||||||||||||||||||||
Event Location: | Yokohama, Japan | ||||||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||||||
Event Start Date: | 28 July 2019 | ||||||||||||||||||||||||||||
Event End Date: | 2 August 2019 | ||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Vorhaben hochauflösende Fernerkundungsverfahren (old) | ||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science German Remote Sensing Data Center > Land Surface Dynamics | ||||||||||||||||||||||||||||
Deposited By: | Hong, Danfeng | ||||||||||||||||||||||||||||
Deposited On: | 22 Jul 2019 13:23 | ||||||||||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:32 |
Available Versions of this Item
- WU-Net: A Weakly-supervised Unmixing Network for Remotely Sensed Hyperspectral Imagery. (deposited 22 Jul 2019 13:23) [Currently Displayed]
Repository Staff Only: item control page