Wu, Xin und Hong, Danfeng und Chanussot, Jocelyn und Xu, Yang und Tao, Ran und Wang, Yue (2020) Fourier-based Rotation-invariant Feature Boosting: An Efficient Framework for Geospatial Object Detection. IEEE Geoscience and Remote Sensing Letters, 17 (2), Seiten 302-306. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2019.2919755. ISSN 1545-598X.
PDF
- Verlagsversion (veröffentlichte Fassung)
2MB |
Offizielle URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8737724
Kurzfassung
Geospatial object detection (GOD) of remote sensing imagery has been attracting increasing interest in recent years, due to the rapid development in spaceborne imaging. Most of the previously proposed object detectors are very sensitive to object deformations, such as scaling and rotation. To this end, we propose a novel and efficient framework for GOD in ths letter, called Fourier-based rotation-invariant feature boosting (FRIFB). A Fourier-based rotation-invariant feature is first generated in polar coordinate. Then, the extracted features can be further structurally refined using aggregate channel features. This leads to a faster feature computation and more robust feature representation, which is good fitting for the coming boosting learning. Finally, in the test phase, we achieve a fast pyramid feature extraction by estimating a scale factor instead of directly collecting all features from the image pyramid. Extensive experiments are conducted on two subsets of NWPU VHR10 data set, demonstrating the superiority and effectiveness of the FRIFB compared to the previous state-of-the-art methods.
elib-URL des Eintrags: | https://elib.dlr.de/128214/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||
Titel: | Fourier-based Rotation-invariant Feature Boosting: An Efficient Framework for Geospatial Object Detection | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | Februar 2020 | ||||||||||||||||||||||||||||
Erschienen in: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||
Band: | 17 | ||||||||||||||||||||||||||||
DOI: | 10.1109/LGRS.2019.2919755 | ||||||||||||||||||||||||||||
Seitenbereich: | Seiten 302-306 | ||||||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||||||
ISSN: | 1545-598X | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | Aggregate channel features (ACFs), boosting, Fourier transformation, geospatial object detection (GOD), rotation-invariant | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||||||
Hinterlegt von: | Hong, Danfeng | ||||||||||||||||||||||||||||
Hinterlegt am: | 05 Jul 2019 10:35 | ||||||||||||||||||||||||||||
Letzte Änderung: | 24 Okt 2023 12:44 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags