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Abstract— Geospatial object detection (GOD) of remote sens-
ing imagery has been attracting increasing interest in recent
years, due to the rapid development in spaceborne imaging. Most
of the previously proposed object detectors are very sensitive
to object deformations, such as scaling and rotation. To this
end, we propose a novel and efficient framework for GOD
in this letter, called Fourier-based rotation-invariant feature
boosting (FRIFB). A Fourier-based rotation-invariant feature is
first generated in polar coordinate. Then, the extracted features
can be further structurally refined using aggregate channel
features. This leads to a faster feature computation and more
robust feature representation, which is good fitting for the coming
boosting learning. Finally, in the test phase, we achieve a fast
pyramid feature extraction by estimating a scale factor instead of
directly collecting all features from the image pyramid. Extensive
experiments are conducted on two subsets of NWPU VHR-
10 data set, demonstrating the superiority and effectiveness of
the FRIFB compared to the previous state-of-the-art methods.

Index Terms— Aggregate channel features (ACFs), boost-
ing, Fourier transformation, geospatial object detection (GOD),
rotation-invariant.

I. INTRODUCTION

RECENTLY, geospatial object detection (GOD) received
a lot of attention in the remote sensing community.

However, the main challenges and difficulties lie in that objects
in optical remote sensing imagery usually suffer from various
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deformations caused by scaling, offset, and rotation. This
inevitably degrades the detection performances. Regarding this
issue, related work has been largely proposed by researchers
over the past decades. They can be roughly categorized by
template matching-based, knowledge-based, object-based, and
machine learning-based methods [1]. Unfortunately, these
approaches mostly fail to capture rotation-related properties
under situations of small-scale training samples.

The multiresolution object rotation is a common but chal-
lenging problem in the task of GOD, which can be split
into two subproblems: rotation-invariant feature extraction and
image pyramid generation. In the first phase, the features can
be learned from the data [2], [3] or artificially designed [4],
[5]. The former learns a robust and discriminative feature
representation from the augmented training set generated by
manually rotating or shifting samples, whose performance is
limited by the quantity and diversity of samples to a great
extent, while the latter extracts the rotation-invariant features
in a densely sampling fashion. Although such scheme of
manual feature design has been proven to be effective [e.g.,
histogram of oriented gradients (HOG) [6]] in constructing
rotation-invariant descriptors, yet the expensive computational
cost and time-consuming nature hinder it from being efficient,
particularly for large-scale data sets. Moreover, those artificial
descriptors also yield a relatively limited performance, since
they are usually constructed in a locally discrete coordinate
system. For this reason, Liu et al. [7] mathematically proved
the rotation-invariant behavior and proposed a FourierHOG
descriptor by converting a discrete coordinate system to a
continuous one, where they applied the features to address a
recognitionlike detection problem, i.e., each pixel or subpixel
is represented as an object or material, and thus this is
actually a pixelwise classification issue rather than a real object
detection one. In the second phase, the features have to be
repeatedly extracted from each layer of the image pyramid,
leading to a large computational cost. Facing this problem,
inspired by fractal statistics of natural images, Dollar et al. [8]
proposed a fast pyramid generative model (FPGM) by only
estimating a scale factor, basically achieving a pyramid feature
extraction in parallel.

A. Motivation

Object rotation in GOD is an important factor to degrade
the detection performance. Most previously proposed meth-
ods usually fail to extract the continuous rotation-invariant
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Fig. 1. Workflow of the proposed FRIFB in the process of training and test.

features, since either manual feature extraction [6] or deep
learning-based strategy [9], [10] models the rotation behaviors
in the discrete coordinate, such as, dividing the angles into
several discrete bins or rotating the training samples with
different angles for data augmentation.

On the other hand, FPGM has been proven to be effective
in achieving a very fast pyramid feature extraction without
additional performance loss [8]. It should be noted that FPGM
has to meet a low-level shift-invariant input, they are RGB,
gray, and gradient channels used in [8]. However, these
features are relatively poor discriminative and sensitive to
the object rotation. Therefore, we expect to develop a more
discriminative and robust feature descriptor and embed it into
FPGM.

Motivated by the aforementioned two points, we expect to
develop or find a mathematically rotation-invariant descriptor
(FourierHOG in our case) against rotation behaviors of arbi-
trary continuous angle. In the meantime, the FourierHOG can
be embedded into FPGM well with the requirement of low-
level shift-invariance, in order to achieve an effective object
detection framework.

B. Contributions

For this purpose, we propose a novel GOD framework by
effectively integrating FourierHOG channel features, aggregate
channel features (ACFs) [8], FPGM, and boosting learning.
To the best of our knowledge, this is the first time that FPGM
and boosting learning have been jointly applied to a unified
GOD framework. With the further FourierHOG and ACF
embedding, we have demonstrated the superiority and effec-
tiveness using the proposed Fourier-based rotation-invariant
feature boosting (FRIFB) detector on two subsets (baseballs
and airplanes) of NWPU VHR-10 data set. More specifically,
the main contributions of this letter can be unfolded as follows.

1) An efficient GOD framework is proposed, called
FRIFB, encompassing feature extraction (rotation-
invariant FourierHOG), feature refining (ACF), feature
pyramid (FPGM), and boosting learning (decision tree
ensembles).

2) The complementary advantages between FPGM and
FourierHOG improve the performance of object detec-
tion in a fast and robust fashion. The robustness of
the FourierHOG against rotation and shift, on the one
hand, perfectly fits the assumption of the FPGM; on the
other hand, FPGM can provide a faster pyramid feature
computation.

3) The proposed FRIFB is effectively applied for the task of
GOD in remote sensing imagery and meanwhile qual-
itatively and quantitatively evaluated on two different
data sets and shows competitive performances against
previous state-of-the-art algorithms.

II. METHODOLOGY

A. Overview

Fig. 1 illustrates the workflow of the FRIFB, step by step,
which consists of main five steps: set the sliding window,
generate rotation-invariant channel features, refine channel
features, training with multiple rounds of bootstrapping, and
testing on image pyramid with octave-paced scale intervals.

1) We first give a fixed bounding box for all training
samples. Generally, the size of the bounding box is
assigned by averaging all training samples. Targets in
the different scale spaces are accordingly upsampled or
downsampled to the same size.

2) Next, the corresponding rotation-invariant channel maps
are obtained using the FourierHOG algorithm.

3) The ACF is subsequently used to structurally refine the
extracted rotation-invariant channel features.
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Algorithm 1 FRIFB in the Process of Training
Require: training sample Tr_S = [x1, · · · , xN ], FourierHOG

parameters pFou, boosting parameters pBoost .
Ensure: detector F RI FB Det
1: procedure RotationInvariant Det(T r_S, pBoost)
2: do
3: TrainWin = SampleWins(Tr_S) � Fix window

size
4: FeaGen = Fourier H OG(TrainWin, pFou) �

FourierHOG
5: TrainFea = AC F(FeaGen) � ACF
6: for t=1:T do
7: ht , εt = DT (TrainFea, pBoost) � Decision

Trees
8: end for

9: F RI FB Det =
T∑

t=1

εt
1−εt

∗ ht � Boosting

10: while εt → 0
11: end procedure
12:

13: procedure Fourier H OG(TrainWin, pFou)
14: for order=1:K do
15: mag, phase = grad(TrainWin)
16: fg = mag. ∗ e−i∗order∗phase

17: FeaGen = RegionConv( fg)
18: end for
19: end procedure

4) The obtained ACF is further fed into the bootstrapping
for training.

5) Finally, FPGM is explored to fast generate feature pyra-
mid features during the testing process.

Algorithm 1 details the specific procedures for the FRIFB.

B. Rotation-Invariant Feature Generation (FourierHOG)

Superior to the vector-valued function, the scalar-valued
function is invariant to rotation or shift behavior. Given an
image I(x, y): x, y → I(x, y), (x, y) denotes the location
of a given pixel. The rotation of scalar-valued function is a
coordinate transform rotation Tg [7], we have

Irot(x, y) := I(Tg(x, y)) = I
(
R−1

g (x, y)
) = [I ◦ Tg](x, y)

(1)

where Irot is a rotated image of I with a go angle, and Rg is a
rotation matrix. Generally, the phase function of samples with
direction information, e.g., gradient field, is a tensor-valued
function D. Both the coordinate and the tensor values have to
rotate, which can be expressed by

Drot(x, y) : = Rg D(Tg(x, y)) = Rg D
(
R−1

g (x, y)
)

= Rg[D ◦ Tg](x, y). (2)

Therefore, as long as the vector rotation degenerates into
scalar rotation, rotation-invariant feature maps can be obtained.
Rotation invariance is analyzed more effectively in polar
coordinate where the features can be separated as the angular

part and radial part P(r), respectively. An optimal angular
information can be represented by such a Fourier basis defined
as ψm(ϕ) = eimϕ , where m stands for rotation order. In [7],
the rotation behaviors g(•) in Fourier domain can be modeled
by a multiplication or convolution operator as follows:

g(Fm1 ∗ Fm2) = e−i(m1+m2)αg [Fm1 ∗ Fm2] ◦ Tg

g(Fm1 Fm2) = e−i(m1+m2)αg [Fm1 Fm2] ◦ Tg (3)

where {Fmi }2
i=1 are defined as their Fourier representations in

polar coordinate.
A pixelwise amplitude and phase value, denoted as

(D(x, y), θ(D(x, y))), is obtained by computing the gradients
in the discrete coordinate, which can be seen as a continuous
impulse function represented by h(ϕ) := ‖D(x, y)‖δ(ϕ −
θ(D(x, y))) [7]. Therefore, the Fourier representation of h(ϕ)
can be formulated by

Fm(x, y) = 1

2π

∫ 2π

0
h(ϕ)e−imϕ = ‖D(x, y)‖e−imθ(D(x,y)).

(4)

Relying on the shift properties of Fourier transform under
polar coordinate, Fm(x, y) with a go relative rotation is
defined as

gFm(x, y) = eimαg [Fm(x, y) ◦ Tg]. (5)

In order to make the feature rotation-invariant, namely,
Fm = gFm , we can construct a set of self-steerability (convo-
lution kernels) with the same rotation order by inverse Fourier
transformation. According to (3), once satisfying m1+m2 = 0,
we can get

g(Fm1 ∗ Fm2) = [Fm1 ∗ Fm2 ] ◦ Tg . (6)

The convolutional features in (6) can be seen as the final
rotation-invariant representation (please refer to [7] for more
proof in detail).

C. Aggregate Channel Features

The ACF is simply computed by subsampling the rotation-
invariant channel maps with a preset scaling factor, as shown
in Fig. 1. This is a poolinglike operation which has demon-
strated its robustness to shifted and rotated deformations to
some extent. With the increase of the factor, the features are
represented from finely to coarsely, while the feature structure
is gradually enhanced.

D. Fast Pyramid Generative Model

Ruderman et al. [11] have theoretically proven that the
ensemble of scenes (natural images) has statistics which are
invariant to scale. Following it, Dollar et al. [8] extended this
theory and proposed a fast image feature pyramid with an
application to pedestrian detection. This technique can effec-
tively achieve a feature channel scaling. That is, the features in
any image scale (s1) can be directly obtained with a product of
a scale-based ratio factor defined by (s1/s2)

−λ and the features
extracted on a given (known) scale (s2) (more details can be
found in [11] and [8]), which is formulated as

Fs1 ≈ Fs2 · (s1/s2)
−λ (7)
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Fig. 2. PRC of the proposed framework and some state-of-the-art approaches
for airplane and baseball diamond, respectively. (a) Baseball diamond.
(b) Airplane.

where {Fsi }2
i=1 denote the rotation-invariant feature maps

extracted from the different image scales [8]. Given Fs1 and
Fs2 and the corresponding scale ratio (s1/s2), the scaling factor
λ is simply estimated by (7) before training and testing model.

The FPGM can compute finely sampled feature pyramids
by feature scaling with octave-spaced scale intervals without
losing performances. Nevertheless, the input in FPGM needs
to meet a low-level feature invariance, hence, the Fourier-based
rotation-invariant feature maps can be perfectly embedded
into this framework to correct the bias and variance of
the trained classifier caused by various deformations (e.g.,
rotation and shift).

III. EXPERIMENTS

A. Data Description and Experiment Setup

The NWPU VHR-10 data set [12] is used as the bench-
mark data for assessing the performances of the mentioned
algorithms. It is collected from Google Earth with a spatial
resolution of 0.5 to 2 m and infrared images with a 0.08-m
spatial resolution obtained from the Vaihingen data set pro-
vided by the German Society for Photogrammetry, Remote
Sensing, and Geoinformation (DGPF). We selected two scenes
including airplanes and baseball diamonds from this data
sets for deeply analyzing and discussing the superiority and
effectiveness of the proposed FRIFB. In our experiments, 60%
scene images are randomly selected for training, and the rest
for the test. Moreover, the positive samples in the training set
are simply augmented by mirror processing, while the negative
ones are randomly selected from 150 images without any
targets. The average size of airplanes and baseball diamonds
are 75 × 75 and 90 × 90, respectively. For a fair comparison,
we conducted fivefold cross-validation and report an average
result.

Similar to classical object detection methods, we employ
the same indices, precision recall curve (PRC) and average
precision (AP), to quantitatively evaluate the performances in
GOD. More precisely, if the intersection over union (IoU)
ratio between the detection bounding box and the ground-truth
box exceeds 0.5, then it is counted as a true positive (TP);
otherwise, as a false negative (FN).

B. Detection on NWPU VHR-10 Data Set

Fig. 3 shows the visual performance of the detection results
using FRIFB, where the green and blue boxes indicate the cor-
rect localization and the false alarm, respectively. As expected,
the proposed method detects most of targets with less false
positive results, demonstrating the robustness and effectiveness

various rotation behaviors. However, the feature discrimination
still remains limited, particularly when detecting the airplane’s
tail fin and the edges or corners of the ground track field.
Note that the robustness of the proposed descriptor mainly
lies in the resolution of training samples and the Fourier basis
functions setting. That means that as long as the training
samples and the basis functions can be sufficiently sampled,
then the robustness against object rotations and complex noises
can be theoretically guaranteed.

C. Comparison With State-of-the-Art Algorithms

To effectively evaluate the performances of the pro-
posed method (FRIFB), we make a comparison with some
state-of-the-art algorithms: bag-of-words (BOW)-SVM [13],
rotation-aware features [14], exemplar-SVMs [15], the col-
lection of part detectors (COPD) [12], rotation dense feature
pyramid networks [10], rotation-invariant CNN (RICNN) [3],
you only look once (YOLO2)1 [16], and FPGM [8]. Similar
to RICNN, data augmentation by rotating or translating the
training samples with various angles are performed in all com-
pared methods. For the parameter setting of these compared
algorithms, refer to the corresponding references for more
details.

We visually observe the trends of PRC and AP values
for the seven different methods in the two different scenes,
as shown in Fig. 2. Correspondingly, Table I lists quantita-
tive comparison results in terms of AP values and running
time per image. More specifically, BOW-SVM yields poor
performances, since it ignores to model the spatial contex-
tual relationships, leading to low-discriminative feature rep-
resentation. Considering the rotation behavior of the objects,
Exemplar-SVMs and Rotation-aware methods perform better,
but the features constructed in a discrete grid still hinder their
performances. In addition, the computational costs for the
above methods are expensive, especially for computing image
pyramid features. The detection method based fast feature
pyramid is effectively run in real-time. Furthermore, fast
feature pyramid consists of ten channels, such as LUV color
channels (three channels), normalized gradient magnitude (one
channel), and HOG (six channels), which can achieve better
performances in baseball diamond samples and faster running
speed. Due to the well-designed network architecture and
GPU’s high-performance computing, YOLO2 achieves the
fastest running speed with competitive detection accuracy.
Nevertheless, the detection performance of YOLO2 is still
inferior to that of the proposed FRIFB at around 1% and
5% levels on the two data sets, respectively, as the YOLO2’s
sensitivity to those tiny and arbitrary pairs of objects hurts its
performance to some extent. Not unexpectedly, the proposed
FRIFB outperforms others in terms of precision. Without
relying on the sample augmentation in the training process,
FourierHOG focuses more on designing the intrinsic rotation
property by simultaneously considering the local and global
information of the image. Note that, although the YOLO-like
methods hold a lower computational cost, yet for many
applications, such as precision agriculture and urban planning

1The code we used, including data augmentation, is available from the
website: https://github.com/ringringyi/DOTA_YOLOv2.
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TABLE I

PERFORMANCE COMPARISONS OF DIFFERENT METHODS IN TERMS OF AP VALUES AND AVERAGE RUNNING TIME PER IMAGE.
THE BEST RESULTS ARE SHOWN IN BOLD

Fig. 3. Airplane and Baseball diamond detection results with the proposed approach on NWPU VHR-10 data sets.

which need to accurately collect the building information, they
prefer to pursue the higher detection accuracy with acceptable
running time. As a result, our proposed FRIFB might be
applicable to some practical cases.

IV. CONCLUSION

In this letter, we revisit the fast pyramid feature method that
is sensitive to rotation and provide an effective remedy by
introducing a rotation-invariant descriptor. This descriptor is
tightly integrated into the power law, which can fundamentally
correct the bias and variance of the trained classifier caused
by rotation. Furthermore, we develop a novel and efficient
framework for GOD framework by integrating multitechniques
that have complementary advantages. Extensive experimental
results indicate the proposed method is robust to rotation
and can effectively improve the detection performance. In the
future work, we will focus on tiny object detection by develop-
ing an end-to-end learning framework (e.g., deep learning) or
introducing auxiliary data (e.g., hyperspectral or multispectral
data [17]).
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