Hang, Renlong and Liu, Qingshan and Hong, Danfeng and Ghamisi, Pedram (2019) Cascaded Recurrent Neural Networks for Hyperspectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 57 (8), pp. 5384-5394. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2019.2899129. ISSN 0196-2892.
PDF
- Published version
2MB |
Official URL: https://ieeexplore.ieee.org/abstract/document/8662780
Abstract
By considering the spectral signature as a sequence, recurrent neural networks (RNNs) have been successfully used to learn discriminative features from hyperspectral images (HSIs) recently. However, most of these models only input the whole spectral bands into RNNs directly, which may not fully explore the specific properties of HSIs. In this paper, we propose a cascaded RNN model using gated recurrent units to explore the redundant and complementary information of HSIs. It mainly consists of two RNN layers. The first RNN layer is used to eliminate redundant information between adjacent spectral bands, while the second RNN layer aims to learn the complementary information from nonadjacent spectral bands. To improve the discriminative ability of the learned features, we design two strategies for the proposed model. Besides, considering the rich spatial information contained in HSIs, we further extend the proposed model to its spectral-spatial counterpart by incorporating some convolutional layers. To test the effectiveness of our proposed models, we conduct experiments on two widely used HSIs. The experimental results show that our proposed models can achieve better results than the compared models.
Item URL in elib: | https://elib.dlr.de/128211/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||
Title: | Cascaded Recurrent Neural Networks for Hyperspectral Image Classification | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | March 2019 | ||||||||||||||||||||
Journal or Publication Title: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
Volume: | 57 | ||||||||||||||||||||
DOI: | 10.1109/TGRS.2019.2899129 | ||||||||||||||||||||
Page Range: | pp. 5384-5394 | ||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Gated recurrent unit (GRU), hyperspectral image (HSI) classification, recurrent neural network (RNN), spectral feature, spectral–spatial feature, ROSIS | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Vorhaben hochauflösende Fernerkundungsverfahren (old) | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||
Deposited By: | Hong, Danfeng | ||||||||||||||||||||
Deposited On: | 05 Jul 2019 10:17 | ||||||||||||||||||||
Last Modified: | 01 Sep 2020 03:00 |
Repository Staff Only: item control page