Hang, Renlong und Liu, Qingshan und Hong, Danfeng und Ghamisi, Pedram (2019) Cascaded Recurrent Neural Networks for Hyperspectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 57 (8), Seiten 5384-5394. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2019.2899129. ISSN 0196-2892.
PDF
- Verlagsversion (veröffentlichte Fassung)
2MB |
Offizielle URL: https://ieeexplore.ieee.org/abstract/document/8662780
Kurzfassung
By considering the spectral signature as a sequence, recurrent neural networks (RNNs) have been successfully used to learn discriminative features from hyperspectral images (HSIs) recently. However, most of these models only input the whole spectral bands into RNNs directly, which may not fully explore the specific properties of HSIs. In this paper, we propose a cascaded RNN model using gated recurrent units to explore the redundant and complementary information of HSIs. It mainly consists of two RNN layers. The first RNN layer is used to eliminate redundant information between adjacent spectral bands, while the second RNN layer aims to learn the complementary information from nonadjacent spectral bands. To improve the discriminative ability of the learned features, we design two strategies for the proposed model. Besides, considering the rich spatial information contained in HSIs, we further extend the proposed model to its spectral-spatial counterpart by incorporating some convolutional layers. To test the effectiveness of our proposed models, we conduct experiments on two widely used HSIs. The experimental results show that our proposed models can achieve better results than the compared models.
elib-URL des Eintrags: | https://elib.dlr.de/128211/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Cascaded Recurrent Neural Networks for Hyperspectral Image Classification | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | März 2019 | ||||||||||||||||||||
Erschienen in: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 57 | ||||||||||||||||||||
DOI: | 10.1109/TGRS.2019.2899129 | ||||||||||||||||||||
Seitenbereich: | Seiten 5384-5394 | ||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Gated recurrent unit (GRU), hyperspectral image (HSI) classification, recurrent neural network (RNN), spectral feature, spectral–spatial feature, ROSIS | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Hong, Danfeng | ||||||||||||||||||||
Hinterlegt am: | 05 Jul 2019 10:17 | ||||||||||||||||||||
Letzte Änderung: | 01 Sep 2020 03:00 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags