Hoffmann, Eike Jens and Werner, Martin and Zhu, Xiao Xiang (2019) Building Instance Classification using Social Media Images. In: 2019 Joint Urban Remote Sensing Event, JURSE 2019, pp. 1-4. JURSE 2019, 2019-05-22 - 2019-05-24, Vannes, France. doi: 10.1109/JURSE.2019.8809056. ISBN 978-172810009-8.
PDF
4MB |
Official URL: http://jurse2019.org/
Abstract
Understanding urbanization and planning for theupcoming changes require detailed knowledge about the placeswhere people live and work. Thus, knowing the usage of buildingsis inevitable to distinguish between residential and commercialplaces. Assessing the usage of buildings from an aerial perspectivealone is challenging and results in unresolveable ambiguities.Ascomplementary data sources, social media images taken fromground level allow access to the building fac ̧ades, as well asongoing social activities around the buildings, which are veryvaluable information while coming to accessing the buildingusages. Towards the fusion of social media images and remotesensing data for this purpose, in this work we present a methodto assess building usages from social media images taken in theirneighborhood. Using a straight forward next neighbor classifierfor mapping images to buildings and pre-trained networks fordimensionality reduction we trained a logistic regression classifierto distinguish between five different building usage classes.Applied to a study area of Los Angeles metropolitan area, USA,we obtain an average precision of 0.67. Hence, we show thatsocial media images can be a valuable additional source to remotesensing data.
Item URL in elib: | https://elib.dlr.de/128126/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Poster) | ||||||||||||||||
Title: | Building Instance Classification using Social Media Images | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 2019 | ||||||||||||||||
Journal or Publication Title: | 2019 Joint Urban Remote Sensing Event, JURSE 2019 | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
DOI: | 10.1109/JURSE.2019.8809056 | ||||||||||||||||
Page Range: | pp. 1-4 | ||||||||||||||||
ISBN: | 978-172810009-8 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | Building Classification, Social Media, Building Usage, Social Media Image, Complementary Data Source | ||||||||||||||||
Event Title: | JURSE 2019 | ||||||||||||||||
Event Location: | Vannes, France | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 22 May 2019 | ||||||||||||||||
Event End Date: | 24 May 2019 | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Geoscientific remote sensing and GIS methods | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||
Deposited By: | Hoffmann, Eike Jens | ||||||||||||||||
Deposited On: | 01 Jul 2019 13:13 | ||||||||||||||||
Last Modified: | 24 Apr 2024 20:31 |
Repository Staff Only: item control page