Hoffmann, Eike Jens und Werner, Martin und Zhu, Xiao Xiang (2019) Building Instance Classification using Social Media Images. In: 2019 Joint Urban Remote Sensing Event, JURSE 2019, Seiten 1-4. JURSE 2019, 2019-05-22 - 2019-05-24, Vannes, France. doi: 10.1109/JURSE.2019.8809056. ISBN 978-172810009-8.
PDF
4MB |
Offizielle URL: http://jurse2019.org/
Kurzfassung
Understanding urbanization and planning for theupcoming changes require detailed knowledge about the placeswhere people live and work. Thus, knowing the usage of buildingsis inevitable to distinguish between residential and commercialplaces. Assessing the usage of buildings from an aerial perspectivealone is challenging and results in unresolveable ambiguities.Ascomplementary data sources, social media images taken fromground level allow access to the building fac ̧ades, as well asongoing social activities around the buildings, which are veryvaluable information while coming to accessing the buildingusages. Towards the fusion of social media images and remotesensing data for this purpose, in this work we present a methodto assess building usages from social media images taken in theirneighborhood. Using a straight forward next neighbor classifierfor mapping images to buildings and pre-trained networks fordimensionality reduction we trained a logistic regression classifierto distinguish between five different building usage classes.Applied to a study area of Los Angeles metropolitan area, USA,we obtain an average precision of 0.67. Hence, we show thatsocial media images can be a valuable additional source to remotesensing data.
elib-URL des Eintrags: | https://elib.dlr.de/128126/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||
Titel: | Building Instance Classification using Social Media Images | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2019 | ||||||||||||||||
Erschienen in: | 2019 Joint Urban Remote Sensing Event, JURSE 2019 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1109/JURSE.2019.8809056 | ||||||||||||||||
Seitenbereich: | Seiten 1-4 | ||||||||||||||||
ISBN: | 978-172810009-8 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Building Classification, Social Media, Building Usage, Social Media Image, Complementary Data Source | ||||||||||||||||
Veranstaltungstitel: | JURSE 2019 | ||||||||||||||||
Veranstaltungsort: | Vannes, France | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 22 Mai 2019 | ||||||||||||||||
Veranstaltungsende: | 24 Mai 2019 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Geowissenschaftl. Fernerkundungs- und GIS-Verfahren | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
Hinterlegt von: | Hoffmann, Eike Jens | ||||||||||||||||
Hinterlegt am: | 01 Jul 2019 13:13 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:31 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags