elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Virtual cockpit instruments displayed on head-worn displays - Capabilities for future cockpit design

Ernst, Johannes M. und Ebrecht, Lars und Schmerwitz, Sven (2019) Virtual cockpit instruments displayed on head-worn displays - Capabilities for future cockpit design. In: 38th IEEE/AIAA Digital Avionics Systems Conference, DASC 2019. 38th AIAA/IEEE Digital Avionics Systems Conference (DASC), 8.-12. Sept 2019, San Diego, CA, USA. doi: 10.1109/dasc43569.2019.9081733.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Head-worn displays (HWDs) have been used on military flight decks for many years. The advancement of this technology - commonly known as augmented reality (AR) - makes it also an interesting choice for the human-machine interface (HMI) design of future civil aircraft. This paper presents an example of how AR glasses can impact new cockpit layouts. We discuss several possibilities of designing and integrating so-called virtual cockpit instruments (VCIs), which are generated by an HWD. The advantages and drawbacks of the proposed HMI are assessed with a human factors study. In recent years, the augmented and virtual reality technology has seen major advancements. The helmets and goggles became more lightweight and comfortable to wear, the monochrome (green) displays were replaced by multi-color screens, and the complex and bulky optical lens systems were substituted by modern waveguide optics. In summary, this evolution leaded to more capable but also more affordable head-worn displays. Together with the improved form factor and comfort, this gives good reason to predict future usage of such AR devices in next-generation flight decks of civil aircraft. The Institute of Flight Guidance at the German Aerospace Center (DLR) has a long history in research on enhanced and synthetic vision systems, which is the classic application of head-up and head-worn AR systems. Motivated by the capabilities of modern HWDs, our current Research is focusing on a holistic cockpit display concept based on AR technology. For this approach, we implemented so-called virtual cockpit instruments on the HWD. As illustrated in Fig. 1, these can be imagined as a virtual counterpart of conventional panel-mounted LCD-displays. The idea of generating VCIs creates several advantages and new possibilities for HMI design. The appearance of conventional flight instruments is tightly coupled to the specifications of the cockpit flat panel screens. This implies that the display symbology is restricted in size, the number of displays is limited, and the location of the display screen is fixed. In contrast, VCIs are very flexible. Size and position can be adapted to the specific display content and to the requirements of the current flight task. Also, the number of virtual screens can be changed dynamically. This means that one can generate additional display areas which can be positioned and sized according to the needs of the pilot and the flight phase. During approach, a pilot can - for instance - open a new virtual screen displaying an approach chart. This "digital kneeboard" can be positioned above the knees like its analog counterpart but also anywhere else around the pilot.In a first evaluation, pilots rated this concept positively. Based on that, a first VCI concept of an obstacle awareness display format for rotorcraft landing and hover tasks was introduced. Our proposed paper further investigates the topic by taking a closer look to the positioning mechanism and the sizing of the VCIs. We present several variants for placing this virtual display within the cockpit. Finally, a comparison of the developed options in terms of flight performance and subjective ratings is performed by means of a human factors study in our helicopter flight simulator. The evaluation shows the potential of augmented reality for future cockpit design and identifies starting points for further research.

elib-URL des Eintrags:https://elib.dlr.de/127391/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Virtual cockpit instruments displayed on head-worn displays - Capabilities for future cockpit design
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Ernst, Johannes M.johannes.ernst (at) dlr.dehttps://orcid.org/0000-0001-8238-3671NICHT SPEZIFIZIERT
Ebrecht, LarsLars.Ebrecht (at) dlr.dehttps://orcid.org/0000-0002-8077-7391NICHT SPEZIFIZIERT
Schmerwitz, SvenSven.Schmerwitz (at) dlr.dehttps://orcid.org/0000-0002-9194-8838NICHT SPEZIFIZIERT
Datum:2019
Erschienen in:38th IEEE/AIAA Digital Avionics Systems Conference, DASC 2019
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
DOI:10.1109/dasc43569.2019.9081733
Status:veröffentlicht
Stichwörter:Augmented Reality, Virtual Reality, Human-Machine Interface, Flight Guidance Displays, Helicopter Operations
Veranstaltungstitel:38th AIAA/IEEE Digital Avionics Systems Conference (DASC)
Veranstaltungsort:San Diego, CA, USA
Veranstaltungsart:internationale Konferenz
Veranstaltungsdatum:8.-12. Sept 2019
Veranstalter :IEEE/AIAA
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Luftverkehrsmanagement und Flugbetrieb
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L AO - Air Traffic Management and Operation
DLR - Teilgebiet (Projekt, Vorhaben):L - Effiziente Flugführung (alt)
Standort: Braunschweig
Institute & Einrichtungen:Institut für Flugführung > Pilotenassistenz
Hinterlegt von: Ernst, Johannes Maria
Hinterlegt am:31 Jul 2019 12:25
Letzte Änderung:24 Jul 2023 10:04

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.