Chiotellis, Ioannis and Zimmermann, Franziska and Cremers, Daniel and Triebel, Rudolph (2018) Incremental Semi-Supervised Learning from Streams for Object Classification. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2018. International Conference on Intelligent Robots and Systems (IROS), 2018-10-01 - 2018-10-05, Madrid, Spain. doi: 10.1109/IROS.2018.8593901. ISBN 978-153868094-0. ISSN 2153-0858.
PDF
809kB |
Abstract
The Label Propagation (LP) algorithm, first introduced by Zhu and Ghahramani, is a semi-supervised method used in transductive learning scenarios, where all data are available already in the beginning. In this work, we present a novel extension of the LP algorithm for applications where data samples are observed sequentially - as is the case in autonomous driving. Specifically, our Incremental Label Propagation algorithm efficiently approximates the so called harmonic solution on a nearest-neighbor graph that is regularly updated by new labeled and unlabeled nodes. We achieve this by reformulating the original algorithm based on an active set of nodes and by introducing a threshold to decide whether the label of a given node should be updated or not. Our method can also deal with graphs that are not fully connected, and we give a formal convergence proof for this general case. In experiments on the challenging KITTI benchmark data stream, we show superior performance in terms of both test accuracy and number of required training labels compared to state-of-the-art online learning methods.
Item URL in elib: | https://elib.dlr.de/126183/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech, Poster) | ||||||||||||||||||||
Additional Information: | <a href="https://github.com/johny-c/incremental-label-propagation" target="blank">code</a> | ||||||||||||||||||||
Title: | Incremental Semi-Supervised Learning from Streams for Object Classification | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 2018 | ||||||||||||||||||||
Journal or Publication Title: | 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2018 | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
DOI: | 10.1109/IROS.2018.8593901 | ||||||||||||||||||||
ISSN: | 2153-0858 | ||||||||||||||||||||
ISBN: | 978-153868094-0 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | semi-supervised learning, object classification | ||||||||||||||||||||
Event Title: | International Conference on Intelligent Robots and Systems (IROS) | ||||||||||||||||||||
Event Location: | Madrid, Spain | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Start Date: | 1 October 2018 | ||||||||||||||||||||
Event End Date: | 5 October 2018 | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Space System Technology | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R SY - Space System Technology | ||||||||||||||||||||
DLR - Research theme (Project): | R - Vorhaben Multisensorielle Weltmodellierung (old) | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Institute of Robotics and Mechatronics (since 2013) > Perception and Cognition | ||||||||||||||||||||
Deposited By: | Triebel, Rudolph | ||||||||||||||||||||
Deposited On: | 28 Jan 2019 09:51 | ||||||||||||||||||||
Last Modified: | 09 Jul 2024 14:53 |
Repository Staff Only: item control page