Bracci, F and Li, M and Marton, Zoltan-Csaba and Kossyk, Ingo (2018) Applicability of Deep Learned vs Traditional Features for Depth Based Classification. In: 6th International Symposium on Computational Modeling of Objects Presented in Images, CompIMAGE 2018. Springer, Heidelberg. CompiImage18, 2018-07-02 - 2018-07-05, Krakow, Poland. doi: 10.1007/978-3-030-20805-9_13. ISBN 978-3-030-20804-2.
![]() |
PDF
1MB |
Official URL: https://www.springerprofessional.de/applicability-of-deep-learned-vs-traditional-features-for-depth-/16753580
Abstract
In robotic applications often highly specific objects need to be recognized, e.g. industrial parts, for which methods can’t rely on the online availability of large labeled training data sets or pre-trained mod- els. This is especially valid for depth data, thus making it challenging for deep learning (DL) approaches. Therefore, this work analyzes the per- formance of various traditional (global or part-based) and DL features on a restricted depth data set, depending on the tasks complexity. While the sample size is small, we can conclude that pre-trained DL descriptors are the most descriptive but not by a statistically significant margin and therefore part-based descriptors are still a viable option for small but difficult 3D data sets.
Item URL in elib: | https://elib.dlr.de/124865/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||
Title: | Applicability of Deep Learned vs Traditional Features for Depth Based Classification | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | July 2018 | ||||||||||||||||||||
Journal or Publication Title: | 6th International Symposium on Computational Modeling of Objects Presented in Images, CompIMAGE 2018 | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
DOI: | 10.1007/978-3-030-20805-9_13 | ||||||||||||||||||||
Editors: |
| ||||||||||||||||||||
Publisher: | Springer, Heidelberg | ||||||||||||||||||||
Series Name: | Lecture Notes in Computer Science | ||||||||||||||||||||
ISBN: | 978-3-030-20804-2 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | 3D shape descriptor, point cloud descriptor, deep learning features, object recognition, scene analysis | ||||||||||||||||||||
Event Title: | CompiImage18 | ||||||||||||||||||||
Event Location: | Krakow, Poland | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Start Date: | 2 July 2018 | ||||||||||||||||||||
Event End Date: | 5 July 2018 | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Space System Technology | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R SY - Space System Technology | ||||||||||||||||||||
DLR - Research theme (Project): | R - Terrestrial Assistance Robotics (old) | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Institute of Robotics and Mechatronics (since 2013) | ||||||||||||||||||||
Deposited By: | Bracci, Fabio | ||||||||||||||||||||
Deposited On: | 11 Dec 2018 23:00 | ||||||||||||||||||||
Last Modified: | 04 Jun 2024 12:45 |
Repository Staff Only: item control page