Shi, Yilei und Zhu, Xiao Xiang und Yin, Wotao und Bamler, Richard (2018) A fast and accurate basis pursuit denoising algorithm with application to super-resolving tomographic SAR. IEEE Transactions on Geoscience and Remote Sensing, 56 (10), Seiten 6148-6158. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2018.2832721. ISSN 0196-2892.
PDF
8MB |
Offizielle URL: https://ieeexplore.ieee.org/document/8412239
Kurzfassung
L1 regularization is used for finding sparse solutions to an underdetermined linear system. As sparse signals are widely expected in remote sensing, this type of regularization scheme and its extensions have been widely employed in many remote sensing problems, such as image fusion, target detection, image super-resolution, and others, and have led to promising results. However, solving such sparse reconstruction problems is computationally expensive and has limitations in its practical use. In this paper, we proposed a novel efficient algorithm for solving the complex-valued L1 regularized least squares problem. Taking the high-dimensional tomographic synthetic aperture radar (TomoSAR) as a practical example, we carried out extensive experiments, both with the simulation data and the real data, to demonstrate that the proposed approach can retain the accuracy of the second-order methods while dramatically speeding up the processing by one or two orders. Although we have chosen TomoSAR as the example, the proposed method can be generally applied to any spectral estimation problems.
elib-URL des Eintrags: | https://elib.dlr.de/124193/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Zusätzliche Informationen: | so2sat; relevancy 4; | ||||||||||||||||||||
Titel: | A fast and accurate basis pursuit denoising algorithm with application to super-resolving tomographic SAR | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | Mai 2018 | ||||||||||||||||||||
Erschienen in: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 56 | ||||||||||||||||||||
DOI: | 10.1109/TGRS.2018.2832721 | ||||||||||||||||||||
Seitenbereich: | Seiten 6148-6158 | ||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | L1 regularization, TomoSAR, basis pursuit denoising (BPDN), second order cone programming (SOCP), proximal gradient (PG) | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science Institut für Methodik der Fernerkundung > Leitungsbereich MF | ||||||||||||||||||||
Hinterlegt von: | Wang, Yuanyuan | ||||||||||||||||||||
Hinterlegt am: | 05 Dez 2018 12:42 | ||||||||||||||||||||
Letzte Änderung: | 08 Nov 2023 14:18 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags