Shahzad, Muhammad and Maurer, Michael and Fraundorfer, Friedrich and Wang, Yuanyuan and Zhu, Xiao Xiang (2018) Extraction of Buildings in VHR SAR Images using fully Convolution Neural Networks. In: 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 4367-4370. IGARSS 2018, 2018-07-22 - 2018-07-27, Valencia, Spanien. doi: 10.1109/igarss.2018.8519603.
PDF
642kB |
Official URL: https://www.igarss2018.org/
Abstract
Modern spaceborne synthetic aperture radar (SAR) sensors, such as TerraSAR-X/TanDEM-X and COSMO-SkyMed, can deliver very high resolution (VHR) data beyond the inherent spatial scales (on the order of 1m) of buildings, constituting invaluable data source for large-scale urban mapping. Processing this VHR data with advanced interferometric techniques, such as SAR tomography (TomoSAR), enables the generation of 3-D (or even 4-D) TomoSAR point clouds from space. In this paper, we present a novel and generic workflow that exploits these TomoSAR point clouds in a way that is capable to automatically produce benchmark annotated (buildings/nonbuildings) SAR datasets. These annotated datasets (building masks) have been utilized to construct and train the state-ofthe-art deep Fully Convolution Neural Networks with an additional Conditional Random Field represented as a Recurrent Neural Network to detect building regions in a single VHR SAR image. The results of building detection are illustrated and validated over TerraSAR-X VHR spotlight SAR image covering approximately 39 km2- almost the whole city of Berlin - with mean pixel accuracies of around 93.84%.
Item URL in elib: | https://elib.dlr.de/123939/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||||||
Title: | Extraction of Buildings in VHR SAR Images using fully Convolution Neural Networks | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | July 2018 | ||||||||||||||||||||||||
Journal or Publication Title: | 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||
DOI: | 10.1109/igarss.2018.8519603 | ||||||||||||||||||||||||
Page Range: | pp. 4367-4370 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | very high resolution (VHR) data, SAR, Neural networks | ||||||||||||||||||||||||
Event Title: | IGARSS 2018 | ||||||||||||||||||||||||
Event Location: | Valencia, Spanien | ||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||
Event Start Date: | 22 July 2018 | ||||||||||||||||||||||||
Event End Date: | 27 July 2018 | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Transport | ||||||||||||||||||||||||
HGF - Program Themes: | Traffic Management (old) | ||||||||||||||||||||||||
DLR - Research area: | Transport | ||||||||||||||||||||||||
DLR - Program: | V VM - Verkehrsmanagement | ||||||||||||||||||||||||
DLR - Research theme (Project): | V - Vabene++ (old) | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > Photogrammetry and Image Analysis Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||
Deposited By: | Zielske, Mandy | ||||||||||||||||||||||||
Deposited On: | 30 Nov 2018 14:34 | ||||||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:27 |
Repository Staff Only: item control page