Shahzad, Muhammad und Maurer, Michael und Fraundorfer, Friedrich und Wang, Yuanyuan und Zhu, Xiao Xiang (2018) Extraction of Buildings in VHR SAR Images using fully Convolution Neural Networks. In: 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 4367-4370. IGARSS 2018, 2018-07-22 - 2018-07-27, Valencia, Spanien. doi: 10.1109/igarss.2018.8519603.
|
PDF
642kB |
Offizielle URL: https://www.igarss2018.org/
Kurzfassung
Modern spaceborne synthetic aperture radar (SAR) sensors, such as TerraSAR-X/TanDEM-X and COSMO-SkyMed, can deliver very high resolution (VHR) data beyond the inherent spatial scales (on the order of 1m) of buildings, constituting invaluable data source for large-scale urban mapping. Processing this VHR data with advanced interferometric techniques, such as SAR tomography (TomoSAR), enables the generation of 3-D (or even 4-D) TomoSAR point clouds from space. In this paper, we present a novel and generic workflow that exploits these TomoSAR point clouds in a way that is capable to automatically produce benchmark annotated (buildings/nonbuildings) SAR datasets. These annotated datasets (building masks) have been utilized to construct and train the state-ofthe-art deep Fully Convolution Neural Networks with an additional Conditional Random Field represented as a Recurrent Neural Network to detect building regions in a single VHR SAR image. The results of building detection are illustrated and validated over TerraSAR-X VHR spotlight SAR image covering approximately 39 km2- almost the whole city of Berlin - with mean pixel accuracies of around 93.84%.
| elib-URL des Eintrags: | https://elib.dlr.de/123939/ | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
| Titel: | Extraction of Buildings in VHR SAR Images using fully Convolution Neural Networks | ||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||
| Datum: | Juli 2018 | ||||||||||||||||||||||||
| Erschienen in: | 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||||||
| In SCOPUS: | Nein | ||||||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||||||
| DOI: | 10.1109/igarss.2018.8519603 | ||||||||||||||||||||||||
| Seitenbereich: | Seiten 4367-4370 | ||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||
| Stichwörter: | very high resolution (VHR) data, SAR, Neural networks | ||||||||||||||||||||||||
| Veranstaltungstitel: | IGARSS 2018 | ||||||||||||||||||||||||
| Veranstaltungsort: | Valencia, Spanien | ||||||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
| Veranstaltungsbeginn: | 22 Juli 2018 | ||||||||||||||||||||||||
| Veranstaltungsende: | 27 Juli 2018 | ||||||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
| HGF - Programm: | Verkehr | ||||||||||||||||||||||||
| HGF - Programmthema: | Verkehrsmanagement (alt) | ||||||||||||||||||||||||
| DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||||||
| DLR - Forschungsgebiet: | V VM - Verkehrsmanagement | ||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | V - Vabene++ (alt) | ||||||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||
| Hinterlegt von: | Zielske, Mandy | ||||||||||||||||||||||||
| Hinterlegt am: | 30 Nov 2018 14:34 | ||||||||||||||||||||||||
| Letzte Änderung: | 24 Apr 2024 20:27 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags