Liu, Chi and Li, Heng-Chao and Fu, Kun and Datcu, Mihai and Emery, William (2019) Bayesian Estimation of Generalized Gamma Mixture Model Based on Variational EM Algorithm. Pattern Recognition, 87, pp. 269-284. Elsevier. doi: 10.1016/j.patcog.2018.10.025. ISSN 0031-3203.
Full text not available from this repository.
Official URL: https://www.sciencedirect.com/science/article/abs/pii/S0031320318303789
Abstract
In this paper, we propose a Bayesian inference method for the generalized Gamma mixture model (GΓMM) based on variational expectation-maximization algorithm. Specifically, the shape parameters, the inverse scale parameters, and the mixing coefficients in the GΓMM are treated as random variables, while the power parameters are left as parameters without assigning prior distributions. The help function is designed to approximate the lower bound of the variational objective function, which facilitates the assignment of the conjugate prior distributions and leads to the closed-form update equations. On this basis, the variational E-step and the variational M-step are alternatively implemented to infer the posteriors of the variables and estimate the parameters. The computational demand is reduced by the proposed method. More importantly, the effective number of components of the GΓMM can be determined automatically. The experimental results demonstrate the effectiveness of the proposed method especially in modeling the asymmetric and heavy-tailed data.
Item URL in elib: | https://elib.dlr.de/123456/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||
Title: | Bayesian Estimation of Generalized Gamma Mixture Model Based on Variational EM Algorithm | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 2019 | ||||||||||||||||||||||||
Journal or Publication Title: | Pattern Recognition | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
Volume: | 87 | ||||||||||||||||||||||||
DOI: | 10.1016/j.patcog.2018.10.025 | ||||||||||||||||||||||||
Page Range: | pp. 269-284 | ||||||||||||||||||||||||
Publisher: | Elsevier | ||||||||||||||||||||||||
ISSN: | 0031-3203 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Finite mixture models, Generalized Gamma distribution, Variational expectation-maximization (VEM), Maximum likelihood estimation, Extended factorized approximation | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Vorhaben hochauflösende Fernerkundungsverfahren (old) | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||
Deposited By: | Dumitru, Corneliu Octavian | ||||||||||||||||||||||||
Deposited On: | 20 Dec 2018 11:30 | ||||||||||||||||||||||||
Last Modified: | 20 Dec 2018 11:30 |
Repository Staff Only: item control page