Liu, Chi und Li, Heng-Chao und Fu, Kun und Datcu, Mihai und Emery, William (2019) Bayesian Estimation of Generalized Gamma Mixture Model Based on Variational EM Algorithm. Pattern Recognition, 87, Seiten 269-284. Elsevier. doi: 10.1016/j.patcog.2018.10.025. ISSN 0031-3203.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://www.sciencedirect.com/science/article/abs/pii/S0031320318303789
Kurzfassung
In this paper, we propose a Bayesian inference method for the generalized Gamma mixture model (GΓMM) based on variational expectation-maximization algorithm. Specifically, the shape parameters, the inverse scale parameters, and the mixing coefficients in the GΓMM are treated as random variables, while the power parameters are left as parameters without assigning prior distributions. The help function is designed to approximate the lower bound of the variational objective function, which facilitates the assignment of the conjugate prior distributions and leads to the closed-form update equations. On this basis, the variational E-step and the variational M-step are alternatively implemented to infer the posteriors of the variables and estimate the parameters. The computational demand is reduced by the proposed method. More importantly, the effective number of components of the GΓMM can be determined automatically. The experimental results demonstrate the effectiveness of the proposed method especially in modeling the asymmetric and heavy-tailed data.
elib-URL des Eintrags: | https://elib.dlr.de/123456/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Bayesian Estimation of Generalized Gamma Mixture Model Based on Variational EM Algorithm | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 2019 | ||||||||||||||||||||||||
Erschienen in: | Pattern Recognition | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 87 | ||||||||||||||||||||||||
DOI: | 10.1016/j.patcog.2018.10.025 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 269-284 | ||||||||||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||||||||||
ISSN: | 0031-3203 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Finite mixture models, Generalized Gamma distribution, Variational expectation-maximization (VEM), Maximum likelihood estimation, Extended factorized approximation | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||
Hinterlegt von: | Dumitru, Corneliu Octavian | ||||||||||||||||||||||||
Hinterlegt am: | 20 Dez 2018 11:30 | ||||||||||||||||||||||||
Letzte Änderung: | 20 Dez 2018 11:30 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags