Coltuc, Dinu and Datcu, Mihai and Coltuc, Daniela (2018) On the Use of Normalized Compression Distances for Image Similarity Detection. Entropy, 20 (2), pp. 1-15. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/e20020099. ISSN 1099-4300.
PDF
3MB |
Official URL: https://www.mdpi.com/1099-4300/20/2/99
Abstract
his paper investigates the usefulness of the normalized compression distance (NCD) for image similarity detection. Instead of the direct NCD between images, the paper considers the correlation between NCD based feature vectors extracted for each image. The vectors are derived by computing the NCD between the original image and sequences of translated (rotated) versions. Feature vectors for simple transforms (circular translations on horizontal, vertical, diagonal directions and rotations around image center) and several standard compressors are generated and tested in a very simple experiment of similarity detection between the original image and two filtered versions (median and moving average). The promising vector configurations (geometric transform, lossless compressor) are further tested for similarity detection on the 24 images of the Kodak set subject to some common image processing. While the direct computation of NCD fails to detect image similarity even in the case of simple median and moving average filtering in 3 × 3 windows, for certain transforms and compressors, the proposed approach appears to provide robustness at similarity detection against smoothing, lossy compression, contrast enhancement, noise addition and some robustness against geometrical transforms (scaling, cropping and rotation)
Item URL in elib: | https://elib.dlr.de/123445/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||
Title: | On the Use of Normalized Compression Distances for Image Similarity Detection | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 2018 | ||||||||||||||||
Journal or Publication Title: | Entropy | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||
Volume: | 20 | ||||||||||||||||
DOI: | 10.3390/e20020099 | ||||||||||||||||
Page Range: | pp. 1-15 | ||||||||||||||||
Publisher: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||
ISSN: | 1099-4300 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | normalized information distance; normalized compression distance; NCD feature vectors; lossless compression; image similarity; robust similarity | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Vorhaben hochauflösende Fernerkundungsverfahren (old) | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||
Deposited By: | Dumitru, Corneliu Octavian | ||||||||||||||||
Deposited On: | 22 Nov 2018 16:30 | ||||||||||||||||
Last Modified: | 15 Jun 2023 12:57 |
Repository Staff Only: item control page