Shi, Yilei and Li, Qingyu and Zhu, Xiao Xiang (2019) Building Footprint Generation using Improved Generative Adversarial Networks. IEEE Geoscience and Remote Sensing Letters, 16 (4), pp. 603-607. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2018.2878486. ISSN 1545-598X.
PDF
- Preprint version (submitted draft)
2MB |
Official URL: https://ieeexplore.ieee.org/document/8581486
Abstract
Building footprint information is an essential ingredient for 3-D reconstruction of urban models. The automatic generation of building footprints from satellite images presents a considerable challenge due to the complexity of building shapes. In this letter, we have proposed improved generative adversarial networks (GANs) for the automatic generation of building footprints from satellite images. We used a conditional GAN (CGAN) with a cost function derived from the Wasserstein distance and added a gradient penalty term. The achieved results indicated that the proposed method can significantly improve the quality of building footprint generation compared to CGANs, the U-Net, and other networks. In addition, our method nearly removes all hyperparameters tuning.
Item URL in elib: | https://elib.dlr.de/122453/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||
Title: | Building Footprint Generation using Improved Generative Adversarial Networks | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 2019 | ||||||||||||||||
Journal or Publication Title: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||
Volume: | 16 | ||||||||||||||||
DOI: | 10.1109/LGRS.2018.2878486 | ||||||||||||||||
Page Range: | pp. 603-607 | ||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
ISSN: | 1545-598X | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | Building footprint, conditional generative adversarial networks (CGANs), generative adversarial networks (GANs), segmentation, Wasserstein GANs (WGANs) | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Remote Sensing and Geo Research | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||
Deposited By: | Hoffmann, Eike Jens | ||||||||||||||||
Deposited On: | 23 Oct 2018 14:50 | ||||||||||||||||
Last Modified: | 08 Nov 2023 10:36 |
Repository Staff Only: item control page