Li, Qingpeng and Mou, Lichao and Liu, Qingjie and Wang, Yunhong and Zhu, Xiao Xiang (2018) HSF-Net: Multiscale Deep Feature Embedding for Ship Detection in Optical Remote Sensing Imagery. IEEE Transactions on Geoscience and Remote Sensing, 56 (12), pp. 7147-7161. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2018.2848901. ISSN 0196-2892.
Full text not available from this repository.
Official URL: https://ieeexplore.ieee.org/document/8412136
Abstract
Ship detection is an important and challenging task in remote sensing applications. Most methods utilize specially designed hand-crafted features to detect ships, and they usually work well only on one scale, which lack generalization and impractical to identify ships with various scales from multiresolu- tion images. In this paper, we propose a novel deep feature-based method to detect ships in very high-resolution optical remote sensing images. In our method, a regional proposal network is used to generate ship candidates from feature maps produced by a deep convolutional neural network. To efficiently detect ships with various scales, a hierarchical selective filtering layer is proposed to map features in different scales to the same scale space. The proposed method is an end-to-end network that can detect both inshore and offshore ships ranging from dozens of pixels to thousands. We test our network on a large ship data set which will be released in the future, consisting of Google Earth images, GaoFen-2 images, and unmanned aerial vehicle data. Experiments demonstrate high precision and robustness of our method. Further experiments on aerial images show its good generalization to unseen scenes.
Item URL in elib: | https://elib.dlr.de/122448/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||
Title: | HSF-Net: Multiscale Deep Feature Embedding for Ship Detection in Optical Remote Sensing Imagery | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | December 2018 | ||||||||||||||||||||||||
Journal or Publication Title: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
Volume: | 56 | ||||||||||||||||||||||||
DOI: | 10.1109/TGRS.2018.2848901 | ||||||||||||||||||||||||
Page Range: | pp. 7147-7161 | ||||||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Marine vehicles, Feature extraction, Remote sensing, Object detection, Proposals, Optical sensors, Optical imaging, Convolutional neural network (CNN), multiscale analysis, object detection, optical image, remote sensing. | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Remote Sensing and Geo Research | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||
Deposited By: | Hoffmann, Eike Jens | ||||||||||||||||||||||||
Deposited On: | 23 Oct 2018 14:36 | ||||||||||||||||||||||||
Last Modified: | 10 Dec 2018 13:05 |
Repository Staff Only: item control page