Li, Qingpeng und Mou, Lichao und Liu, Qingjie und Wang, Yunhong und Zhu, Xiao Xiang (2018) HSF-Net: Multiscale Deep Feature Embedding for Ship Detection in Optical Remote Sensing Imagery. IEEE Transactions on Geoscience and Remote Sensing, 56 (12), Seiten 7147-7161. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2018.2848901. ISSN 0196-2892.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://ieeexplore.ieee.org/document/8412136
Kurzfassung
Ship detection is an important and challenging task in remote sensing applications. Most methods utilize specially designed hand-crafted features to detect ships, and they usually work well only on one scale, which lack generalization and impractical to identify ships with various scales from multiresolu- tion images. In this paper, we propose a novel deep feature-based method to detect ships in very high-resolution optical remote sensing images. In our method, a regional proposal network is used to generate ship candidates from feature maps produced by a deep convolutional neural network. To efficiently detect ships with various scales, a hierarchical selective filtering layer is proposed to map features in different scales to the same scale space. The proposed method is an end-to-end network that can detect both inshore and offshore ships ranging from dozens of pixels to thousands. We test our network on a large ship data set which will be released in the future, consisting of Google Earth images, GaoFen-2 images, and unmanned aerial vehicle data. Experiments demonstrate high precision and robustness of our method. Further experiments on aerial images show its good generalization to unseen scenes.
| elib-URL des Eintrags: | https://elib.dlr.de/122448/ | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
| Titel: | HSF-Net: Multiscale Deep Feature Embedding for Ship Detection in Optical Remote Sensing Imagery | ||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||
| Datum: | Dezember 2018 | ||||||||||||||||||||||||
| Erschienen in: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||
| Open Access: | Nein | ||||||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||||||||||||||
| Band: | 56 | ||||||||||||||||||||||||
| DOI: | 10.1109/TGRS.2018.2848901 | ||||||||||||||||||||||||
| Seitenbereich: | Seiten 7147-7161 | ||||||||||||||||||||||||
| Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
| ISSN: | 0196-2892 | ||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||
| Stichwörter: | Marine vehicles, Feature extraction, Remote sensing, Object detection, Proposals, Optical sensors, Optical imaging, Convolutional neural network (CNN), multiscale analysis, object detection, optical image, remote sensing. | ||||||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung | ||||||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||
| Hinterlegt von: | Hoffmann, Eike Jens | ||||||||||||||||||||||||
| Hinterlegt am: | 23 Okt 2018 14:36 | ||||||||||||||||||||||||
| Letzte Änderung: | 10 Dez 2018 13:05 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags