Hong, Danfeng and Yokoya, Naoto and Zhu, Xiao Xiang and Chanussot, Jocelyn (2018) Learning A Common Subspace from Hyperspectral-Multispectral Correspondences. WHISPERS 2018, 2018-09-23 - 2018-09-26, Amsterdam, Netherlands.
PDF
- Only accessible within DLR
83kB |
Official URL: http://www.ieee-whispers.com/2017/11/23/whispers-2018/
Abstract
With a large amount of multispectral imagery available (e.g. Sentinel-2, Landsat-8), considerable attention has been paid to global multispectral landcover classification. There is, however, a typical bottleneck for further improving the performance of classification in the poor spectral information of multispectral data. On the contrary, hyperspectral data fails to be largely collected but is characterized by rich spectral information. To this end, we aim to learn a common subspace from hyperspectral-multispectral correspondences by simultaneously considering subspace learning and classification. Local manifold structure jointly constructed from different modalities is further embedded into the proposed framework. With the learned projections, the multispectral out-of-samples can be smoothly projected into the common subspace, which are expected to be better clarified. Extensive experiments on two HS-MS datasets where MS data sets are theoretically generated by their corresponding HS data, are performed to demonstrate the superiority and effectiveness of the proposed method in comparison with several state-of-the-art methods.
Item URL in elib: | https://elib.dlr.de/122308/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Poster) | ||||||||||||||||||||
Title: | Learning A Common Subspace from Hyperspectral-Multispectral Correspondences | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 2018 | ||||||||||||||||||||
Refereed publication: | No | ||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Cross-modality learning, common subspace learning, hyperspectral, landcover classification, multispectral, remote sensing. | ||||||||||||||||||||
Event Title: | WHISPERS 2018 | ||||||||||||||||||||
Event Location: | Amsterdam, Netherlands | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Start Date: | 23 September 2018 | ||||||||||||||||||||
Event End Date: | 26 September 2018 | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Vorhaben hochauflösende Fernerkundungsverfahren (old) | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||
Deposited By: | Hong, Danfeng | ||||||||||||||||||||
Deposited On: | 19 Oct 2018 13:39 | ||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:26 |
Repository Staff Only: item control page