Hong, Danfeng und Yokoya, Naoto und Zhu, Xiao Xiang und Chanussot, Jocelyn (2018) Learning A Common Subspace from Hyperspectral-Multispectral Correspondences. WHISPERS 2018, 2018-09-23 - 2018-09-26, Amsterdam, Netherlands.
PDF
- Nur DLR-intern zugänglich
83kB |
Offizielle URL: http://www.ieee-whispers.com/2017/11/23/whispers-2018/
Kurzfassung
With a large amount of multispectral imagery available (e.g. Sentinel-2, Landsat-8), considerable attention has been paid to global multispectral landcover classification. There is, however, a typical bottleneck for further improving the performance of classification in the poor spectral information of multispectral data. On the contrary, hyperspectral data fails to be largely collected but is characterized by rich spectral information. To this end, we aim to learn a common subspace from hyperspectral-multispectral correspondences by simultaneously considering subspace learning and classification. Local manifold structure jointly constructed from different modalities is further embedded into the proposed framework. With the learned projections, the multispectral out-of-samples can be smoothly projected into the common subspace, which are expected to be better clarified. Extensive experiments on two HS-MS datasets where MS data sets are theoretically generated by their corresponding HS data, are performed to demonstrate the superiority and effectiveness of the proposed method in comparison with several state-of-the-art methods.
elib-URL des Eintrags: | https://elib.dlr.de/122308/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||
Titel: | Learning A Common Subspace from Hyperspectral-Multispectral Correspondences | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2018 | ||||||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Cross-modality learning, common subspace learning, hyperspectral, landcover classification, multispectral, remote sensing. | ||||||||||||||||||||
Veranstaltungstitel: | WHISPERS 2018 | ||||||||||||||||||||
Veranstaltungsort: | Amsterdam, Netherlands | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 23 September 2018 | ||||||||||||||||||||
Veranstaltungsende: | 26 September 2018 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Hong, Danfeng | ||||||||||||||||||||
Hinterlegt am: | 19 Okt 2018 13:39 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:26 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags