Hong, Danfeng and Yokoya, Naoto and Xu, Jian and Zhu, Xiao Xiang (2018) Joint & Progressive Learning from High-Dimensional Data for Multi-Label Classification. European Conference on Computer Vision (ECCV) 2018, 2018-09-08 - 2018-09-14, Munich, Germany. ISBN 978-3-030-01237-3.
PDF
2MB |
Official URL: https://eccv2018.org/
Abstract
Despite the fact that nonlinear subspace learning techniques (e.g. manifold learning) have successfully applied to data representation, there is still room for improvement in explainability (explicit mapping), generalization (out-of-samples), and cost-effectiveness (linearization). To this end, a novel linearized subspace learning technique is developed in a joint and progressive way, called joint and progressive learning strategy (J-Play), with its application to multi-label classification. The J-Play learns high-level and semantically meaningful feature representation from high-dimensional data by 1) jointly performing multiple subspace learning and classification to find a latent subspace where samples are expected to be better classified; 2) progressively learning multi-coupled projections to linearly approach the optimal mapping bridging the original space with the most discriminative subspace; 3) locally embedding manifold structure in each learnable latent subspace. Extensive experiments are performed to demonstrate the superiority and effectiveness of the proposed method in comparison with previous state-of-the-art methods.
Item URL in elib: | https://elib.dlr.de/120797/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Poster) | ||||||||||||||||||||
Title: | Joint & Progressive Learning from High-Dimensional Data for Multi-Label Classification | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 2018 | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
Page Range: | pp. 1-16 | ||||||||||||||||||||
Series Name: | Lecture Notes in Computer Science | ||||||||||||||||||||
ISBN: | 978-3-030-01237-3 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Alternating direction method of multipliers, high-dimensional data, manifold regularization, multi-label classification, joint learning, progressive learning | ||||||||||||||||||||
Event Title: | European Conference on Computer Vision (ECCV) 2018 | ||||||||||||||||||||
Event Location: | Munich, Germany | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Start Date: | 8 September 2018 | ||||||||||||||||||||
Event End Date: | 14 September 2018 | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Vorhaben hochauflösende Fernerkundungsverfahren (old) | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||
Deposited By: | Hong, Danfeng | ||||||||||||||||||||
Deposited On: | 04 Jul 2018 13:29 | ||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:24 |
Repository Staff Only: item control page