elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Joint & Progressive Learning from High-Dimensional Data for Multi-Label Classification

Hong, Danfeng und Yokoya, Naoto und Xu, Jian und Zhu, Xiao Xiang (2018) Joint & Progressive Learning from High-Dimensional Data for Multi-Label Classification. European Conference on Computer Vision (ECCV) 2018, 2018-09-08 - 2018-09-14, Munich, Germany. ISBN 978-3-030-01237-3.

[img] PDF
2MB

Offizielle URL: https://eccv2018.org/

Kurzfassung

Despite the fact that nonlinear subspace learning techniques (e.g. manifold learning) have successfully applied to data representation, there is still room for improvement in explainability (explicit mapping), generalization (out-of-samples), and cost-effectiveness (linearization). To this end, a novel linearized subspace learning technique is developed in a joint and progressive way, called joint and progressive learning strategy (J-Play), with its application to multi-label classification. The J-Play learns high-level and semantically meaningful feature representation from high-dimensional data by 1) jointly performing multiple subspace learning and classification to find a latent subspace where samples are expected to be better classified; 2) progressively learning multi-coupled projections to linearly approach the optimal mapping bridging the original space with the most discriminative subspace; 3) locally embedding manifold structure in each learnable latent subspace. Extensive experiments are performed to demonstrate the superiority and effectiveness of the proposed method in comparison with previous state-of-the-art methods.

elib-URL des Eintrags:https://elib.dlr.de/120797/
Dokumentart:Konferenzbeitrag (Poster)
Titel:Joint & Progressive Learning from High-Dimensional Data for Multi-Label Classification
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Hong, Danfengdanfeng.hong (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Yokoya, NaotoRIKENNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Xu, Jianjian.xu (at) dlr.dehttps://orcid.org/0000-0003-2348-125XNICHT SPEZIFIZIERT
Zhu, Xiao XiangDLR-IMF/TUM-LMFNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2018
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Seitenbereich:Seiten 1-16
Name der Reihe:Lecture Notes in Computer Science
ISBN:978-3-030-01237-3
Status:veröffentlicht
Stichwörter:Alternating direction method of multipliers, high-dimensional data, manifold regularization, multi-label classification, joint learning, progressive learning
Veranstaltungstitel:European Conference on Computer Vision (ECCV) 2018
Veranstaltungsort:Munich, Germany
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:8 September 2018
Veranstaltungsende:14 September 2018
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben hochauflösende Fernerkundungsverfahren (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Hong, Danfeng
Hinterlegt am:04 Jul 2018 13:29
Letzte Änderung:24 Apr 2024 20:24

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.