Hong, Danfeng und Yokoya, Naoto und Xu, Jian und Zhu, Xiao Xiang (2018) Joint & Progressive Learning from High-Dimensional Data for Multi-Label Classification. European Conference on Computer Vision (ECCV) 2018, 2018-09-08 - 2018-09-14, Munich, Germany. ISBN 978-3-030-01237-3.
PDF
2MB |
Offizielle URL: https://eccv2018.org/
Kurzfassung
Despite the fact that nonlinear subspace learning techniques (e.g. manifold learning) have successfully applied to data representation, there is still room for improvement in explainability (explicit mapping), generalization (out-of-samples), and cost-effectiveness (linearization). To this end, a novel linearized subspace learning technique is developed in a joint and progressive way, called joint and progressive learning strategy (J-Play), with its application to multi-label classification. The J-Play learns high-level and semantically meaningful feature representation from high-dimensional data by 1) jointly performing multiple subspace learning and classification to find a latent subspace where samples are expected to be better classified; 2) progressively learning multi-coupled projections to linearly approach the optimal mapping bridging the original space with the most discriminative subspace; 3) locally embedding manifold structure in each learnable latent subspace. Extensive experiments are performed to demonstrate the superiority and effectiveness of the proposed method in comparison with previous state-of-the-art methods.
elib-URL des Eintrags: | https://elib.dlr.de/120797/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||
Titel: | Joint & Progressive Learning from High-Dimensional Data for Multi-Label Classification | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2018 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
Seitenbereich: | Seiten 1-16 | ||||||||||||||||||||
Name der Reihe: | Lecture Notes in Computer Science | ||||||||||||||||||||
ISBN: | 978-3-030-01237-3 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Alternating direction method of multipliers, high-dimensional data, manifold regularization, multi-label classification, joint learning, progressive learning | ||||||||||||||||||||
Veranstaltungstitel: | European Conference on Computer Vision (ECCV) 2018 | ||||||||||||||||||||
Veranstaltungsort: | Munich, Germany | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 8 September 2018 | ||||||||||||||||||||
Veranstaltungsende: | 14 September 2018 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Hong, Danfeng | ||||||||||||||||||||
Hinterlegt am: | 04 Jul 2018 13:29 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:24 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags