Ji, Teng-yu and Yokoya, Naoto and Zhu, Xiao Xiang and Huang, Ting-zhu (2018) Non-local tensor completion for multitemporal remotely sensed images inpainting. IEEE Transactions on Geoscience and Remote Sensing, 56 (6), pp. 3047-3061. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2018.2790262. ISSN 0196-2892.
PDF
8MB |
Official URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8303784
Abstract
Remotely sensed images may contain some missing areas because of poor weather conditions and sensor failure. Information of those areas may play an important role in the interpretation of multitemporal remotely sensed data. The paper aims at reconstructing the missing information by a non-local low-rank tensor completion method (NL-LRTC). First, nonlocal correlations in the spatial domain are taken into account by searching and grouping similar image patches in a large search window. Then low-rankness of the identified 4-order tensor groups is promoted to consider their correlations in spatial, spectral, and temporal domains, while reconstructing the underlying patterns. Experimental results on simulated and real data demonstrate that the proposed method is effective both qualitatively and quantitatively. In addition, the proposed method is computationally efficient compared to other patch based methods such as the recent proposed PM-MTGSR method.
Item URL in elib: | https://elib.dlr.de/120440/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||
Title: | Non-local tensor completion for multitemporal remotely sensed images inpainting | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | January 2018 | ||||||||||||||||||||
Journal or Publication Title: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
Volume: | 56 | ||||||||||||||||||||
DOI: | 10.1109/TGRS.2018.2790262 | ||||||||||||||||||||
Page Range: | pp. 3047-3061 | ||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Multitemporal remotely sensed images, missing information reconstruction, tensor completion | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Vorhaben hochauflösende Fernerkundungsverfahren (old) | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||
Deposited By: | Wang, Yuanyuan | ||||||||||||||||||||
Deposited On: | 19 Jun 2018 12:14 | ||||||||||||||||||||
Last Modified: | 20 Jun 2021 15:51 |
Repository Staff Only: item control page