Geiß, Christian and Thoma, Matthias and Taubenböck, Hannes (2018) Cost-Sensitive Multitask Active Learning for Characterization of Urban Environments With Remote Sensing. IEEE Geoscience and Remote Sensing Letters, 15 (6), pp. 922-926. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/lgrs.2018.2813436. ISSN 1545-598X.
PDF
- Preprint version (submitted draft)
1MB |
Official URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8341760
Abstract
In this letter, we propose a novel cost-sensitive multi-task active learning (CSMTAL) approach. Cost-sensitive active learning (CSAL) methods were recently introduced to specifically minimize labeling efforts emerging from ground surveys. Here, we build upon a CSAL method but compile a set of unlabeled samples from a learning set which can be considered relevant with respect to multiple target variables. To this purpose, a multi-task meta-protocol based on alternating selection is implemented. It comprises a so-called one-sided selection (i.e., single-task AL selection for a reference target variable with simultaneous labeling of the residual target variables) with a changing leading variable in an iterative selection process. Experimental results are obtained for the city of Cologne, Germany. The target variables to be predicted, using features from remote sensing and a Support Vector Machines framework, comprise “building type” and “roof type”. Comparative model accuracy evaluations underline the capability of the CSMTAL method to provide beneficial solutions with respect to a random sampling strategy and non-cost-sensitive multi-task active sampling.
Item URL in elib: | https://elib.dlr.de/120168/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||
Title: | Cost-Sensitive Multitask Active Learning for Characterization of Urban Environments With Remote Sensing | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | June 2018 | ||||||||||||||||
Journal or Publication Title: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||
Volume: | 15 | ||||||||||||||||
DOI: | 10.1109/lgrs.2018.2813436 | ||||||||||||||||
Page Range: | pp. 922-926 | ||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
ISSN: | 1545-598X | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | Building type, cost-sensitive multitask active learning (CSMTAL), LiDAR, remote sensing, roof type, support vector machines (SVMs), very high-resolution imagery | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Security-relevant Earth Observation, R - Remote Sensing and Geo Research | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | German Remote Sensing Data Center German Remote Sensing Data Center > Geo Risks and Civil Security | ||||||||||||||||
Deposited By: | Geiß, Christian | ||||||||||||||||
Deposited On: | 13 Jun 2018 09:40 | ||||||||||||||||
Last Modified: | 02 Nov 2023 10:15 |
Repository Staff Only: item control page