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Abstract— In this letter, we propose a novel cost-sensitive 
multi-task active learning (CSMTAL) approach. Cost-sensitive 
active learning (CSAL) methods were recently introduced to 
specifically minimize labeling efforts emerging from ground 
surveys. Here, we build upon a CSAL method but compile a set 
of unlabeled samples from a learning set which can be considered 
relevant with respect to multiple target variables. To this 
purpose, a multi-task meta-protocol based on alternating 
selection is implemented. It comprises a so-called one-sided 
selection (i.e., single-task AL selection for a reference target 
variable with simultaneous labeling of the residual target 
variables) with a changing leading variable in an iterative 
selection process. Experimental results are obtained for the city 
of Cologne, Germany. The target variables to be predicted, using 
features from remote sensing and a Support Vector Machines 
framework, comprise “building type” and “roof type”. 
Comparative model accuracy evaluations underline the 
capability of the CSMTAL method to provide beneficial solutions 
with respect to a random sampling strategy and non-cost-
sensitive multi-task active sampling. 
 

Index Terms— Cost-sensitive Multi-task Active Learning, 
Support Vector Machines, Remote Sensing, Very High 
Resolution Imagery, LiDAR, Building Type, Roof Type 
 

I. INTRODUCTION 

he derivation of thematic information from remote sensing 
data is often based on techniques of empirical inference. 
Such approaches foresee the collection of properly 

encoded prior knowledge (i.e., labeled samples) to infer a rule 
(e.g., a decision function) to accurately predict different 
thematic classes with respect to the residual instances under 
analyses (i.e., unlabeled samples). Thereby, the collection of a 
sufficient amount of prior knowledge can be very costly. 
Especially remote sensing-based applications determine 
frequently labor intensive ground truth surveys to compile a 
training set for model learning. Such applications comprise 
urban land use / land cover mapping [1],[2], retrieval of 
biophysical parameters [3], the quantitative description of 
urban morphology [4], or natural hazard-related vulnerability 
and risk assessments [5], [6], among numerous others. 
Different sampling strategies were followed to compile a 
proper training set (i.e., a pool of labeled samples) efficiently 
[7]-[9]. Thereby, active learning (AL) methods establish query 
functions to select unlabeled instances that can be considered 
to be the most valuable for improvement in terms of accuracy 
of a preliminary learned model. Then, selected unlabeled 
samples are labeled in a prioritized manner by a so-called 
oracle (e.g., an expert in the field). Thus, AL procedures aim 

to compile effective training sets with few relevant labeled 
samples [10].  

Recent works also consider labeling costs emerging from 
ground surveys [11], [12]. In this paper, we build upon the 
concept of cost-sensitive AL (CSAL), which internalizes the 
costs for labeling efforts with respect to sample selection. 
However, we render the AL problem as a multi-task (MTAL) 
optimization procedure. In a MTAL environment, the 
classification model is not strictly optimized for a single target 
variable. Instead, the goal is to learn an efficient solution with 
respect to multiple target variables simultaneously [13]. In the 
application context of this paper, we aim to characterize the 
urban environment. In particular, labels for multiple target 
variables must be assigned to a building in order to specify 
different properties (i.e., “building type”, and “roof type”) 
using features from remote sensing data. To this purpose, a 
MTAL meta-protocol is followed based on alternating 
selection (AS). The governing principle of AS is to implement 
a so-called one-sided selection (i.e., single-task AL selection 
for a reference target variable with simultaneous labeling of 
the residual target variables), with a changing leading variable 
in an iterative selection process. Given those methodological 
considerations, we introduce a novel method termed cost-
sensitive multi-task active learning with alternating selection 
strategy (CSMTAL-AS). The concept of MTAL was recently 
employed by the authors of [14] in the context of remote 
sensing. There, MTAL was used to optimize so-called remote 
rapid visual screening assessments of buildings by an operator 
in a laboratory. As such, we build upon our previous work but 
establish here a cost-sensitive extension for optimization of 
data collection in ground surveys.  

The remainder of the letter is organized as follows. Section 
II documents the developed CSMTAL-AS method. Section III 
is used to describe study area, data sets and parameterization 
of methods. Results of the actual experiments are reported in 
section IV. We give concluding remarks in section V.  

II. COST-SENSITIVE MULTI-TASK ACTIVE LEARNING 

The goal of the proposed CSMTAL-AS method is to select a 
batch � = {��, ��, … , ��} of ℎ samples from a pool of 
unlabeled samples � (i.e., learning set) to be included in the 
training set by evaluating three criteria: i) uncertainty, ii) 
diversity, and iii) costs for labeling with respect to a changing 
leading variable in an iterative selection process.  

A. Uncertainty, Diversity, and Cost Criteria for AL 

To incorporate uncertain samples, confidence �(�) for 
each unlabeled sample � ∈ � is computed from its functional 
distance ��(�), � = 1,2, … , �, to � decision functions of binary 
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____________________________________________________________________________________________________ 

Algorithm 1 CSMTAL-AS 
Inputs: 
λcost, λuncertainty, λdiversity (weighting parameters that tune the 
tradeoff between cost, uncertainty and diversity) 
m (number of samples selected for each target variable based 
on their uncertainty) 
h (batch size) 
t (number of target variables) 
Output:  
X (set of unlabeled samples to be included in the training set) 
1.Initialize l = 1. 
  Repeat 
 2.  Initialize k = 1. 
 3.  Compute c(x) for each sample x ∈ U for currently  
               leading target variable. 
 4.  Select the set of m unlabeled samples with the lowest 
   c(x) value (most uncertain) {x1, x2, . . . , xm}  
 5.  Compute distance matrix with pairwise distances  
   between all candidates, including current position. 
   Repeat 
 6.   Initialize Xk to the empty set. 
 7.   Include in Xk the kth most uncertain sample. 
    Repeat 
 8.    Compute combination of diversity and cost with (8) 
 9.    Include unlabeled sample xt which minimizes (8) in X. 

    Until |Xk| = h 
 10.   k = k + 1 
   Until  k = n 
 11.     Select the batch X which minimizes (5) with (7). 
 12.     Add labels to the set of samples {x1, x2, . . . , xh} ∈ X 
      and include them in the current training set T. 
 13.     l = l + 1 
      if l > t  then l = 1 
  Until stopping criterion 
____________________________________________________________________________________________________ 

When the AL process is finished and a batch of previously 
unlabeled samples is labeled and moved from the learning set 
to the training set, the classification model is established with 
the considered SVM approach.  

III. EXPERIMENTAL SETUP 

A. Study Area and Data Sets 

We simulate a ground survey with data from the city of 
Cologne, Germany. Building geometries were compiled from 
cadastral data sources, which were also made publicly 
available via the OpenStreetMap (OSM) project [17]. Building 
blocks for feature calculation were generated from the main 
street network of the OSM data set for Cologne. In addition, 
VHR multispectral imagery was deployed, which was 
acquired by the WorldView-II sensor. The pansharpened 
imagery features a spatial resolution of 50 cm. The deployed 
four-band multispectral (blue, green, red, NIR) imagery was 
acquired on January 31, 2014. In addition, elevation 
information from LiDAR data with a spatial resolution of 1 m 
was used [14]. Building characteristics for the complete 
building inventory of the city of Cologne are based on 
cadastral sources and were specifically compiled in the 
context of a flood-related decision support system. From this 
data set we selected the target variables “building type”, and 
“roof type” and rendered the experiment as a two-task 
annotation scenario. Target variables with affiliated classes 
and numbers of labeled samples are documented in Table I.  

TABLE I 
TARGET VARIABLES AND POPULATION OF THE CLASSES FOR 

TRAINING/LEARNING AND INDEPENDENT TEST SET  

building type train test ∑ 

detached house 12 549 3 463 16 012 
detached building block 5 166 1 513 6 679 

perimeter block development 10 275 2 871 13 146 

terraced house 37 958 11 228 49 186 

garage 39 646 4 132 43 778 

∑ 105 594 23 207 128 801 

roof type train test ∑ 

flat roof 49 938 6 005 55 943 
single pitch roof 9 100 1 325 10 425 

gable roof 75 204 15 877 91 081 

∑ 134 242 23 207 157 449 

B. Experimental Setup 

For a discriminative characterization of buildings, an 
exhaustive number of features was computed from three 
spatial levels (i.e., individual building geometries, aggregated 
building geometries and building blocks). Overall, 152 
features were derived. Those features describe shape and 
extent of the buildings in two and three dimensions, are based 
on 1st and 2nd order spectral information, and characterize the 
spatial context and configuration, which the individual 
buildings are embedded in. A detailed list of the deployed 
features is provided in [14]. To compile compact feature sets, 
a multi-step feature selection procedure was carried out based 
on multivariate correlation analysis [14]. The final feature 
vectors comprise 20 dimensions for the variables building 
type, as well as roof type.  

A batch size of ℎ =  5 for AL strategies was adopted 
to allow for a feasible tradeoff between computational efforts 
and model accuracy. For the SVM, we deployed Gaussian 

RBF kernels �(�, ��) = exp (−�‖� − ��‖²). Tuning of � and 
� was addressed by a grid search strategy based on fivefold 
cross-validation. Generalization accuracy was evaluated in 
terms of estimated κ statistic on the average of three 
independent trials with an exhaustive optimization of 
hyperparameters Φ ∈ {C, γ}: � = {2��, 2��, … , 2��}, γ =
{2���, 2���, … , 2�}. Hyperparameters were retuned very 
frequently at the beginning and less frequently at the end of 
the learning process [14]. Documented accuracies were 
computed from mean κ statistic values of 50 independent trials 
with initial training sets made up of two samples per class. 
Labeled samples were split into independent training and test 
sets, whereby a larger share of available samples was allocated 
to the training set. This was done to ensure that the spatial 
selection of samples is not biased with respect to the 
availability of potential training samples that can be queried in 
close spatial proximity. From the pool of labeled samples, a 
maximum of 800 samples were used for model learning and 
the complete pool of labeled test samples was used for 
accuracy evaluation. 

Distances for the simulated ground survey were computed 
from the OSM street network. To this purpose, the street 
network was modeled as an undirected graph, where 
constituting points of street polygons were treated as knots and 
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purely one-sided selection strategies do not feature favorable 
performance properties in general [13], [14]. Four different 
results are provided for the CSMTAL-AS approach according 
to different weights of the criterion function, especially with 
respect to a consecutive increase of the cost criterion (i.e., 
����� = {0.2,0.4,0.6,0.8}). 

Fig. 2a provides an overview on exemplary routes for 
labeling through the building inventory of Cologne, which 
were generated from the different methods. The starting point 
was fixed and subroutes, which start from the respective 100th 
labeled building, are visualized for the subsequent 20 
buildings (i.e., labeling of four batches). If the cost criterion is 
weighted weakly (i.e., ����� = {0.2,0.4}), buildings all over 
the urban area are queried. Thereby, subroutes feature an 
explorative nature, i.e., large distances are covered for labeling 
particularly interesting buildings. However, compared to 
random sampling and MTAL-AS, covered distances and 
affiliated timely resources are already cut in half. If the cost 
criterion is weighted more strongly (i.e., ����� = {0.6,0.8}), 
time resources further decline by following more compact 
routes, which dominantly focus on inner-city areas. The large 
river Rhine divides the urban area of Cologne in eastern and 
western parts as indicated in Fig. 2a. Crossings from the 
eastern to the western parts of the city using the few bridges 
over the Rhine become less likely, and some parts of the urban 
area remain unvisited when weighting costs strongly.  

Fig. 2b provides accuracy estimates for the two 
variables as well as their average as a function of amount of 
prior knowledge (i.e., number of labeled samples). The 
achieved accuracy levels underline the challenging nature of 
the classification problem. Thereby, best models encoded with 
a sufficient amount of prior knowledge achieve κ statistics up 
to 0.7 for the target variable “building type”, whereas models 
for the target variable “roof type” hardly feature substantial 
agreements (i.e., κ statistics exceeding values of 0.6). In 
addition to accuracy estimates, affiliated labeling times of the 
different approaches are provided. When estimating “building 
types”, MTAL-AS provides superior models in terms of 
accuracy, however, the CSMTAL strategies also allow for 
comparable accuracy levels. Thereby, an increased weighting 
of the costs consistently decreases accuracy, and accuracies of 
random sampling can hardly be exceeded with a highly 
weighted cost criterion. Nevertheless, when relating the 
achieved accuracy levels to the affiliated labeling times it can 
be seen that the CSMTAL approaches enable a beneficial 
tradeoff between labeling time and model accuracy. They 
allow for a considerable decrease of labeling time in 
concordance with only a slight decrease of accuracy. This 
tradeoff also becomes evident when inspecting results for the 
simultaneously labeled second target variable “roof type”. 
Again, MTAL-AS provides superior models in terms of 
accuracy but can only slightly exceed random selection. In 
parallel, the CSMTAL strategies feature slightly lower 
accuracy levels compared to MTAL-AS and random queries. 
However, the gap in terms of labeling efforts between the 
benchmark approaches and CSMTAL methods is large and 
clearly favors the latter. To enable further insights into the 
tradeoff between model accuracy and labeling time, the actual 
labeling time is plotted on the x-axis in Fig. 2c. There it can be 
seen that CSMTAL allows for substantially increased model 

accuracy with the same labeling time compared to the non-
cost-sensitive approaches.  

V. CONCLUSIONS  

In this letter, we have introduced a cost-sensitive multi-task 
AL approach for guided in situ data collection with respect to 
multiple target variables. To this purpose, we followed a 
strategy which foresees the collection of a batch of the most 
informative unlabeled samples based on a criterion function. 
The function internalizes an uncertainty, diversity, and cost 
criterion. This procedure is embedded in a multi-task meta-
protocol, which is based on alternating selection of a leading 
variable in an iterative selection process. The proposed 
method was applied to the problem of optimization of data 
collection in a ground truth survey, in the context of 
classification of building characteristics using VHR 
multispectral imagery and LiDAR data. Experimental results 
underline the usefulness of the proposed query function, as it 
allows for substantially increased model accuracies given the 
same labeling time compared to non-cost-sensitive benchmark 
approaches.  
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