Geiß, Christian und Thoma, Matthias und Taubenböck, Hannes (2018) Cost-Sensitive Multitask Active Learning for Characterization of Urban Environments With Remote Sensing. IEEE Geoscience and Remote Sensing Letters, 15 (6), Seiten 922-926. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/lgrs.2018.2813436. ISSN 1545-598X.
|
PDF
- Preprintversion (eingereichte Entwurfsversion)
1MB |
Offizielle URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8341760
Kurzfassung
In this letter, we propose a novel cost-sensitive multi-task active learning (CSMTAL) approach. Cost-sensitive active learning (CSAL) methods were recently introduced to specifically minimize labeling efforts emerging from ground surveys. Here, we build upon a CSAL method but compile a set of unlabeled samples from a learning set which can be considered relevant with respect to multiple target variables. To this purpose, a multi-task meta-protocol based on alternating selection is implemented. It comprises a so-called one-sided selection (i.e., single-task AL selection for a reference target variable with simultaneous labeling of the residual target variables) with a changing leading variable in an iterative selection process. Experimental results are obtained for the city of Cologne, Germany. The target variables to be predicted, using features from remote sensing and a Support Vector Machines framework, comprise “building type” and “roof type”. Comparative model accuracy evaluations underline the capability of the CSMTAL method to provide beneficial solutions with respect to a random sampling strategy and non-cost-sensitive multi-task active sampling.
| elib-URL des Eintrags: | https://elib.dlr.de/120168/ | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
| Titel: | Cost-Sensitive Multitask Active Learning for Characterization of Urban Environments With Remote Sensing | ||||||||||||||||
| Autoren: |
| ||||||||||||||||
| Datum: | Juni 2018 | ||||||||||||||||
| Erschienen in: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||
| Open Access: | Ja | ||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||||||
| Band: | 15 | ||||||||||||||||
| DOI: | 10.1109/lgrs.2018.2813436 | ||||||||||||||||
| Seitenbereich: | Seiten 922-926 | ||||||||||||||||
| Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
| ISSN: | 1545-598X | ||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||
| Stichwörter: | Building type, cost-sensitive multitask active learning (CSMTAL), LiDAR, remote sensing, roof type, support vector machines (SVMs), very high-resolution imagery | ||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Sicherheitsrelevante Erdbeobachtung, R - Fernerkundung u. Geoforschung | ||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||
| Institute & Einrichtungen: | Deutsches Fernerkundungsdatenzentrum Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit | ||||||||||||||||
| Hinterlegt von: | Geiß, Christian | ||||||||||||||||
| Hinterlegt am: | 13 Jun 2018 09:40 | ||||||||||||||||
| Letzte Änderung: | 02 Nov 2023 10:15 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags