DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Morphology- and Ion Size-Induced Actuation of Carbon Nanotube Architectures

Geier, Sebastian and Mahrholz, Thorsten and Wierach, Peter and Sinapius, Michael (2018) Morphology- and Ion Size-Induced Actuation of Carbon Nanotube Architectures. International Journal of Smart and Nano Materials, 9 (1). Taylor & Francis. doi: 10.1080/19475411.2018.1457573. ISSN 1947-5411.

Full text not available from this repository.


Future adaptive applications require lightweight and stiff materials with high active strain but low energy consumption. A suitable combination of these properties is offered by carbon nanotube-based actuators. Papers made of carbon nanotubes (CNTs) are charged within an electrolyte, which results in an electrical field forming a double-layer of ions at their surfaces and a deflection of the papers can be detected. Until now, there is no generally accepted theory for the actuation mechanism. This study focuses on the actuation mechanism of CNT papers, which represent architectures of randomly oriented CNTs. The samples are tested electrochemically in an in-plane set-up to detect the free strain. The elastic modulus of the CNT papers is analyzed in a tensile test facility. The influence of various ion sizes of water-based electrolytes is investigated. During the tests, four parameters that have a significant influence on the mechanical performance of CNT papers were identified: the test conditions, the electrical charging, the microstructure and the ion size. All of these influencing factors Point to the mechanically weak inter-tube linking at which the actuation seems to take place. Quadratic voltage-strain correlation suggests a combination of electrostatic and volumetric effects as the possible reason for CNT paper actuation.

Item URL in elib:https://elib.dlr.de/119537/
Document Type:Article
Title:Morphology- and Ion Size-Induced Actuation of Carbon Nanotube Architectures
AuthorsInstitution or Email of AuthorsAuthor's ORCID iD
Geier, SebastianSebastian.Geier (at) dlr.dehttps://orcid.org/0000-0001-7941-3630
Mahrholz, ThorstenThorsten.Mahrholz (at) dlr.dehttps://orcid.org/0000-0003-1488-0910
Wierach, PeterPeter.Wierach (at) dlr.deUNSPECIFIED
Sinapius, MichaelMichael.Sinapius (at) dlr.deUNSPECIFIED
Journal or Publication Title:International Journal of Smart and Nano Materials
Refereed publication:Yes
Open Access:Yes
Gold Open Access:Yes
In ISI Web of Science:Yes
DOI :10.1080/19475411.2018.1457573
EditorsEmailEditor's ORCID iD
Benjeddou, Ayechayech.benjeddou@supmeca.frUNSPECIFIED
Leng, Jinsongijsnm@hit.edu.cnUNSPECIFIED
Publisher:Taylor & Francis
Keywords:Carbon nanotubes, actuation mechanism, ion-size, morphology, double-layer;
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Aeronautics
HGF - Program Themes:fixed-wing aircraft
DLR - Research area:Aeronautics
DLR - Program:L AR - Aircraft Research
DLR - Research theme (Project):L - Structures and Materials (old)
Location: Braunschweig
Institutes and Institutions:Institute of Composite Structures and Adaptive Systems > Multifunctional Materials
Deposited By: Geier, Sebastian
Deposited On:07 May 2018 08:26
Last Modified:14 Dec 2019 04:24

Repository Staff Only: item control page

Help & Contact
electronic library is running on EPrints 3.3.12
Copyright © 2008-2017 German Aerospace Center (DLR). All rights reserved.