elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Multitemporal Very High Resolution From Space: Outcome of the 2016 IEEE GRSS Data Fusion Contest

Mou, LiChao und Zhu, Xiaoxiang und Vakalopoulou, Maria und Karantzalos, Konstantinos und Paragios, Nikos und Le Saux, Bertrand und Moser, Gabriele und Tuia, Devis (2017) Multitemporal Very High Resolution From Space: Outcome of the 2016 IEEE GRSS Data Fusion Contest. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10 (8), Seiten 3435-3447. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2017.2696823. ISSN 1939-1404.

[img] PDF
1MB

Offizielle URL: http://ieeexplore.ieee.org/document/7948767/

Kurzfassung

In this paper, the scientific outcomes of the 2016 Data Fusion Contest organized by the Image Analysis and Data Fusion Technical Committee of the IEEE Geoscience and Remote Sensing Society are discussed. The 2016 Contest was an open topic competition based on a multitemporal and multimodal dataset, which included a temporal pair of very high resolution panchromatic and multispectral Deimos-2 images and a video captured by the Iris camera on-board the International Space Station. The problems addressed and the techniques proposed by the participants to the Contest spanned across a rather broad range of topics, and mixed ideas and methodologies from the remote sensing, video processing, and computer vision. In particular, the winning team developed a deep learning method to jointly address spatial scene labeling and temporal activity modeling using the available image and video data. The second place team proposed a random field model to simultaneously perform coregistration of multitemporal data, semantic segmentation, and change detection. The methodological key ideas of both these approaches and the main results of the corresponding experimental validation are discussed in this paper.

elib-URL des Eintrags:https://elib.dlr.de/119432/
Dokumentart:Zeitschriftenbeitrag
Titel:Multitemporal Very High Resolution From Space: Outcome of the 2016 IEEE GRSS Data Fusion Contest
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Mou, LiChaoLiChao.Mou (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Zhu, Xiaoxiangxiao.zhu (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Vakalopoulou, Mariamariavak (at) central.ntua.grNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Karantzalos, Konstantinoskarank (at) central.ntua.grNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Paragios, Nikosnikos.paragios (at) ecp.frNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Le Saux, Bertrandbertrand.le_saux (at) onera.frNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Moser, Gabrielegabriele.moser (at) unige.itNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Tuia, Devisdevis.tuia (at) wur.nlNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2017
Erschienen in:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:10
DOI:10.1109/JSTARS.2017.2696823
Seitenbereich:Seiten 3435-3447
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:1939-1404
Status:veröffentlicht
Stichwörter:Change detection, convolutional neural networks (CNN), deep learning, image analysis and data fusion, multiresolution, multisource, multimodal, random fields, tracking, video from space.
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben hochauflösende Fernerkundungsverfahren (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung
Hinterlegt von: Mou, LiChao
Hinterlegt am:21 Mär 2018 12:27
Letzte Änderung:03 Nov 2023 14:08

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.