Ghamisi, Pedram and Yokoya, Naoto (2018) IMG2DSM: Height Simulation from Single Imagery Using Conditional Generative Adversarial Nets. IEEE Geoscience and Remote Sensing Letters, 15 (5), pp. 794-798. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2018.2806945. ISSN 1545-598X.
PDF
2MB |
Official URL: http://ieeexplore.ieee.org/document/8306501/
Abstract
This paper proposes a groundbreaking approach in the remote sensing community to simulating digital surface model (DSM) from a single optical image. This novel technique uses conditional generative adversarial nets whose architecture is based on an encoder-decoder network with skip connections (generator) and penalizing structures at the scale of image patches (discriminator). The network is trained on scenes where both DSM and optical data are available to establish an image-to-DSM translation rule. The trained network is then utilized to simulate elevation information on target scenes where no corresponding elevation information exists. The capability of the approach is evaluated both visually (in terms of photo interpretation) and quantitatively (in terms of reconstruction errors and classification accuracies) on sub-decimeter spatial resolution datasets captured over Vaihingen, Potsdam, and Stockholm. The results confirm the promising performance of the proposed framework.
Item URL in elib: | https://elib.dlr.de/119293/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||
Title: | IMG2DSM: Height Simulation from Single Imagery Using Conditional Generative Adversarial Nets | ||||||||||||
Authors: |
| ||||||||||||
Date: | 2018 | ||||||||||||
Journal or Publication Title: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||
Refereed publication: | Yes | ||||||||||||
Open Access: | Yes | ||||||||||||
Gold Open Access: | No | ||||||||||||
In SCOPUS: | Yes | ||||||||||||
In ISI Web of Science: | Yes | ||||||||||||
Volume: | 15 | ||||||||||||
DOI: | 10.1109/LGRS.2018.2806945 | ||||||||||||
Page Range: | pp. 794-798 | ||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||
ISSN: | 1545-598X | ||||||||||||
Status: | Published | ||||||||||||
Keywords: | Conditional generative adversarial nets, convolutional neural network, deep learning, digital surface model (DSM), encoder-decoder nets, optical images | ||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||
HGF - Program: | Space | ||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||
DLR - Research theme (Project): | R - Vorhaben hochauflösende Fernerkundungsverfahren (old) | ||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > SAR Signal Processing | ||||||||||||
Deposited By: | Ghamisi, Pedram | ||||||||||||
Deposited On: | 13 Mar 2018 12:11 | ||||||||||||
Last Modified: | 23 Jul 2022 13:44 |
Repository Staff Only: item control page