Ghamisi, Pedram und Yokoya, Naoto (2018) IMG2DSM: Height Simulation from Single Imagery Using Conditional Generative Adversarial Nets. IEEE Geoscience and Remote Sensing Letters, 15 (5), Seiten 794-798. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2018.2806945. ISSN 1545-598X.
PDF
2MB |
Offizielle URL: http://ieeexplore.ieee.org/document/8306501/
Kurzfassung
This paper proposes a groundbreaking approach in the remote sensing community to simulating digital surface model (DSM) from a single optical image. This novel technique uses conditional generative adversarial nets whose architecture is based on an encoder-decoder network with skip connections (generator) and penalizing structures at the scale of image patches (discriminator). The network is trained on scenes where both DSM and optical data are available to establish an image-to-DSM translation rule. The trained network is then utilized to simulate elevation information on target scenes where no corresponding elevation information exists. The capability of the approach is evaluated both visually (in terms of photo interpretation) and quantitatively (in terms of reconstruction errors and classification accuracies) on sub-decimeter spatial resolution datasets captured over Vaihingen, Potsdam, and Stockholm. The results confirm the promising performance of the proposed framework.
elib-URL des Eintrags: | https://elib.dlr.de/119293/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||
Titel: | IMG2DSM: Height Simulation from Single Imagery Using Conditional Generative Adversarial Nets | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 2018 | ||||||||||||
Erschienen in: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
Band: | 15 | ||||||||||||
DOI: | 10.1109/LGRS.2018.2806945 | ||||||||||||
Seitenbereich: | Seiten 794-798 | ||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||
ISSN: | 1545-598X | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Conditional generative adversarial nets, convolutional neural network, deep learning, digital surface model (DSM), encoder-decoder nets, optical images | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung | ||||||||||||
Hinterlegt von: | Ghamisi, Pedram | ||||||||||||
Hinterlegt am: | 13 Mär 2018 12:11 | ||||||||||||
Letzte Änderung: | 23 Jul 2022 13:44 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags