Ullrich, Monika and Ali, Haider and Durner, Maximilian and Marton, Zoltan-Csaba and Triebel, Rudolph (2017) Selecting CNN Features for Online Learning of 3D Objects. In: IEEE International Conference on Intelligent Robots and Systems. IEEE. IROS 2017, 2017-09-24 - 2017-09-28, Vancouver, Canada. doi: 10.1109/iros.2017.8206393.
PDF
- Only accessible within DLR
331kB |
Abstract
We present a novel method for classifying 3D objects that is particularly tailored for the requirements in robotic applications. The major challenges here are the comparably small amount of available training data and the fact that often data is perceived in streams and not in fixed-size pools. Traditional state-of-the-art learning methods, however, require a large amount of training data, and their online learning capabilities are usually limited. Therefore, we propose a modality-specific selection of convolutional neural networks (CNN), pre-trained or fine-tuned, in combination with a classifier that is designed particularly for online learning from data streams, namely the Mondrian Forest (MF). We show that this combination of trained features obtained from a CNN can be improved further if a feature selection algorithm is applied. In our experiments, we use the resulting features both with a MF and a linear Support Vector Machine (SVM). With SVM we beat the state of the art on an RGB-D dataset, while with MF a strong result for active learning is achieved.
Item URL in elib: | https://elib.dlr.de/116731/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||||||
Title: | Selecting CNN Features for Online Learning of 3D Objects | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 2017 | ||||||||||||||||||||||||
Journal or Publication Title: | IEEE International Conference on Intelligent Robots and Systems | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||
DOI: | 10.1109/iros.2017.8206393 | ||||||||||||||||||||||||
Publisher: | IEEE | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | feature selection, deep learned features, online learning | ||||||||||||||||||||||||
Event Title: | IROS 2017 | ||||||||||||||||||||||||
Event Location: | Vancouver, Canada | ||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||
Event Start Date: | 24 September 2017 | ||||||||||||||||||||||||
Event End Date: | 28 September 2017 | ||||||||||||||||||||||||
Organizer: | IEEE | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Space System Technology | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R SY - Space System Technology | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Vorhaben Multisensorielle Weltmodellierung (old) | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Institute of Robotics and Mechatronics (since 2013) > Perception and Cognition | ||||||||||||||||||||||||
Deposited By: | Durner, Maximilian | ||||||||||||||||||||||||
Deposited On: | 19 Dec 2017 11:07 | ||||||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:21 |
Repository Staff Only: item control page