Ullrich, Monika und Ali, Haider und Durner, Maximilian und Marton, Zoltan-Csaba und Triebel, Rudolph (2017) Selecting CNN Features for Online Learning of 3D Objects. In: IEEE International Conference on Intelligent Robots and Systems. IEEE. IROS 2017, 2017-09-24 - 2017-09-28, Vancouver, Canada. doi: 10.1109/iros.2017.8206393.
PDF
- Nur DLR-intern zugänglich
331kB |
Kurzfassung
We present a novel method for classifying 3D objects that is particularly tailored for the requirements in robotic applications. The major challenges here are the comparably small amount of available training data and the fact that often data is perceived in streams and not in fixed-size pools. Traditional state-of-the-art learning methods, however, require a large amount of training data, and their online learning capabilities are usually limited. Therefore, we propose a modality-specific selection of convolutional neural networks (CNN), pre-trained or fine-tuned, in combination with a classifier that is designed particularly for online learning from data streams, namely the Mondrian Forest (MF). We show that this combination of trained features obtained from a CNN can be improved further if a feature selection algorithm is applied. In our experiments, we use the resulting features both with a MF and a linear Support Vector Machine (SVM). With SVM we beat the state of the art on an RGB-D dataset, while with MF a strong result for active learning is achieved.
elib-URL des Eintrags: | https://elib.dlr.de/116731/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Titel: | Selecting CNN Features for Online Learning of 3D Objects | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 2017 | ||||||||||||||||||||||||
Erschienen in: | IEEE International Conference on Intelligent Robots and Systems | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
DOI: | 10.1109/iros.2017.8206393 | ||||||||||||||||||||||||
Verlag: | IEEE | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | feature selection, deep learned features, online learning | ||||||||||||||||||||||||
Veranstaltungstitel: | IROS 2017 | ||||||||||||||||||||||||
Veranstaltungsort: | Vancouver, Canada | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 24 September 2017 | ||||||||||||||||||||||||
Veranstaltungsende: | 28 September 2017 | ||||||||||||||||||||||||
Veranstalter : | IEEE | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben Multisensorielle Weltmodellierung (alt) | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition | ||||||||||||||||||||||||
Hinterlegt von: | Durner, Maximilian | ||||||||||||||||||||||||
Hinterlegt am: | 19 Dez 2017 11:07 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:21 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags